lonar lake
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 7)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
Vol 12 ◽  
Author(s):  
Amaraja Joshi ◽  
Sonia Thite ◽  
Prachi Karodi ◽  
Neetha Joseph ◽  
Tushar Lodha

A Gram-stain positive, long, rod-shaped, motile, and spore-forming bacterium (MEB199T) was isolated from a sediment sample collected from Lonar Lake, India. The strain was oxidase and catalase positive. The strain grew optimally at pH 10, NaCl concentration of 3.5% at 37°C. The major fatty acids were iso-C15:0, iso-C16:0, anteiso-C15:0, and iso-C17:0. The peptidoglycan contained meso-diaminopimelic acid (meso-DAP). Phosphatidylethanolamine, diphosphatidylglycerol, and phosphatidylglycerol were the major polar lipids of MEB199T. Phylogenetic analysis based on 16S rRNA gene sequence showed that strain MEB199T belonged to the family Bacillaceae and exhibited a distinctive position among the members of the genus Alkalihalobacillus (Ahb.). Strain MEB199T shared the highest 16S rRNA gene sequence similarity with Alkalihalobacillus alkalinitrilicus ANL-iso4T (98.36%), whereas with type species Ahb. alcalophilus DSM 485T, it is 94.91%, indicating that strain MEB199T is distinctly related to the genus Alkalihalobacillus. The G + C content of genomic DNA was 36.47 mol%. The digital DNA–DNA hybridization (dDDH) (23.6%) and average nucleotide identity (ANI) (81%) values between strain MEB199T and Ahb. alkalinitrilicus ANL-iso4T confirmed the novelty of this new species. The pairwise identity based on the 16S rRNA gene sequence between the species of genus Alkalihalobacillus ranges from 87.4 to 99.81% indicating the heterogeneity in the genus. The different phylogenetic analysis based on the genome showed that the members of the genus Alkalihalobacillus separated into eight distinct clades. The intra-clade average amino acid identity (AAI) and percentage of conserved proteins (POCP) range from 52 to 68% and 37 to 59%, respectively, which are interspersed on the intra-genera cutoff values; therefore, we reassess the taxonomy of genus Alkalihalobacillus. The phenotypic analysis also corroborated the differentiation between these clades. Based on the phylogenetic analysis, genomic indices, and phenotypic traits, we propose the reclassification of the genus Alkalihalobacillus into seven new genera for which the names Alkalihalobacterium gen. nov., Halalkalibacterium gen. nov., Halalkalibacter gen. nov., Shouchella gen. nov., Pseudalkalibacillus gen. nov., Alkalicoccobacillus gen. nov., and Alkalihalophilus gen. nov. are proposed and provide an emended description of Alkalihalobacillus sensu stricto. Also, we propose the Ahb. okuhidensis as a heterotypic synonym of Alkalihalobacillus halodurans. Based on the polyphasic taxonomic analysis, strain MEB199T represents a novel species of newly proposed genus for which the name Alkalihalobacterium elongatum gen. nov. sp. nov. is proposed. The type strain is MEB199T (= MCC 2982T, = JCM 33704T, = NBRC 114256T, = CGMCC 1.17254T).


2021 ◽  
Vol 16 (1) ◽  
pp. 61-69
Author(s):  
R. R. Surve ◽  
A. V. Shirke ◽  
R. R. Athalye ◽  
M. M. Sangare

Meteoric impact crater Lonar Lake is located in Buldhana district of Maharashtra always remained as point of attraction among the researchers of different fields since many decades as it has rich chemical and biological diversity in it. Physicochemical qualities of water samples were analysed by many researchers and revealed that, the water is alkaline with high pH and categorised by high concentration of Alkalinity, Sulphate, sodium, Total dissolved solids, Magnesium, Chloride and Dissolved Oxygen. Due to this, interesting microbial complexity have been developed across the Lake. From this review, it is found that alkalinity has been decreased by nearly 19 percent, salinity nearby 7 percent and therefore its pH is seen to drop up to 6.2. This decreases is mainly due to process of sedimentation of salt at the bottom of the Lake. This has affected the living of Micro-organism. Many researches have been carried to study the nature of Lonar Lake from different fields. Therefore, an attempt is made to assemble important aspects of Lonar Lake from various fields. Conservation of Lonar Lake with proper management is necessary as it has uniqueness and beauty in itself.


2021 ◽  
Vol 120 (1) ◽  
pp. 220
Author(s):  
Anurag Mishra ◽  
K. Abdul Hakeem ◽  
V. V. Rao ◽  
P. V. N. Rao ◽  
Santanu Chowdhury

2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Sukrampal Yadav ◽  
Sunil A. Patil

Abstract Understanding of the extreme microorganisms that possess extracellular electron transfer (EET) capabilities is pivotal to advance electromicrobiology discipline and to develop niche-specific microbial electrochemistry-driven biotechnologies. Here, we report on the microbial electroactive biofilms (EABs) possessing the outward EET capabilities from a haloalkaline environment of the Lonar lake. We used the electrochemical cultivation approach to enrich haloalkaliphilic EABs under 9.5 pH and 20 g/L salinity conditions. The electrodes controlled at 0.2 V vs. Ag/AgCl yielded the best-performing biofilms in terms of maximum bioelectrocatalytic current densities of 548 ± 23 and 437 ± 17 µA/cm2 with acetate and lactate substrates, respectively. Electrochemical characterization of biofilms revealed the presence of two putative redox-active moieties with the mean formal potentials of 0.183 and 0.333 V vs. Ag/AgCl, which represent the highest values reported to date for the EABs. 16S-rRNA amplicon sequencing of EABs revealed the dominance of unknown Geoalkalibacter sp. at ~80% abundance. Further investigations on the haloalkaliphilic EABs possessing EET components with high formal potentials might offer interesting research prospects in electromicrobiology.


Sign in / Sign up

Export Citation Format

Share Document