scholarly journals Sphingomonas oryziterrae sp. nov. and Sphingomonas jinjuensis sp. nov. isolated from rhizosphere soil of rice (Oryza sativa L.)

2011 ◽  
Vol 61 (10) ◽  
pp. 2389-2394 ◽  
Author(s):  
Eu Jin Chung ◽  
Eun Ju Jo ◽  
Hwan Sik Yoon ◽  
Geun Cheol Song ◽  
Che Ok Jeon ◽  
...  

Two Gram-reaction-negative, yellow–orange-pigmented, rod-shaped bacterial strains, designated YC6722T and YC6723T, were isolated from rhizosphere soil samples collected from rice fields in Jinju, Korea. Strains YC6722T and YC6723T grew optimally at 25–30 °C and at pH 7.0–8.5. Phylogenetic analyses of 16S rRNA gene sequences showed that strain YC6722T was most closely related to Sphingomonas jaspsi TDMA-16T (96.6 % sequence similarity) and strain YC6723T was related most closely to Sphingomonas aquatilis JSS7T (96.9 %). The two strains contained ubiquinone-10 (Q-10) as the major respiratory quinone system and sym-homospermidine as the major polyamine. The G+C contents of the genomic DNA of strains YC6722T and YC6723T were 63.3 and 61.0 mol%, respectively. The major fatty acid was C18 : 1ω7c. The polar lipids detected in the two strains were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, sphingoglycolipid, phosphatidyldimethylethanolamine and other unknown lipids. On the basis of their phylogenetic positions, and their biochemical and phenotypic characteristics, strains YC6722T and YC6723T represent two novel species of the genus Sphingomonas, for which the names Sphingomonas oryziterrae sp. nov. ( = KCTC 22476T  = DSM 21455T) and Sphingomonas jinjuensis sp. nov. (KCTC 22477T  = DSM 21457T) are proposed.

2010 ◽  
Vol 60 (9) ◽  
pp. 2023-2026 ◽  
Author(s):  
Shu-Juan Cao ◽  
Chun-Ping Deng ◽  
Bao-Zhen Li ◽  
Xiu-Qin Dong ◽  
Hong-Li Yuan

A Gram-negative, yellow-pigmented bacterium, designated strain R2A-16T, was isolated from sediment of Rupa Lake in Nepal and analysed using a polyphasic taxonomic approach. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain R2A-16T is affiliated to the genus Cloacibacterium of the family Flavobacteriaceae; 16S rRNA gene sequence similarity between strain R2A-16T and Cloacibacterium normanense CCUG 46293T was 98.07 %. The isolate contained iso-C15 : 0 (35.6 %) as the major fatty acid and menaquinone MK-6 as the predominant respiratory quinone. The G+C content of the genomic DNA was 33.3 mol%. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain R2A-16T represents a novel species of the genus Cloacibacterium, for which the name Cloacibacterium rupense sp. nov. is proposed; the type strain is R2A-16T (=CGMCC 1.7656T =NBRC 104931T).


2011 ◽  
Vol 61 (9) ◽  
pp. 2298-2303 ◽  
Author(s):  
Yoshimichi Sugawara ◽  
Atsuko Ueki ◽  
Kunihiro Abe ◽  
Nobuo Kaku ◽  
Kazuya Watanabe ◽  
...  

Two facultatively anaerobic bacterial strains, designated WR061T and WR054, were isolated from rice-straw residue in a methanogenic reactor treating waste from cattle farms in Japan. The two strains were phylogenetically positioned close to one another and had almost the same phenotypic properties. Cells were Gram-reaction-positive, non-motile, non-spore-forming, irregular rods. Cobalamin (vitamin B12) was required for growth. The strains utilized various carbohydrates, including hexoses and disaccharides, and produced acetate and propionate from these carbohydrates. Pentoses and polysaccharides were not utilized. They grew at 20–37 °C (optimum 35 °C) and pH 5.3–8.0 (optimum pH 6.8–7.5). Catalase and nitrate-reducing activities were detected. Aesculin was hydrolysed. The major cellular fatty acids were anteiso-C15 : 0 and C15 : 0 DMA, the major respiratory quinone was menaquinone MK-9(H4) and the genomic DNA G+C content was 69.3–69.5 mol%. The diagnostic diamino acid in the peptidoglycan was meso-diaminopimelic acid. Phylogenetic analysis based on 16S rRNA gene sequences placed the strains in the phylum Actinobacteria. Both strains were remotely related to the species in the family Propionibacteriaceae and Propionibacterium propionicum JCM 5830T was the most closely related type strain with a sequence similarity of 91.6 %. Based on phylogenetic, physiological and chemotaxonomic analyses, the two novel strains together represent a novel species of a new genus, for which the name Propioniciclava tarda gen. nov., sp. nov. is proposed. The type strain is WR061T ( = JCM 15804T  = DSM 22130T).


2010 ◽  
Vol 60 (7) ◽  
pp. 1554-1558 ◽  
Author(s):  
Rangasamy Anandham ◽  
Hang-Yeon Weon ◽  
Soo-Jin Kim ◽  
Yi-Seul Kim ◽  
Soon-Wo Kwon

A strictly aerobic, Gram-staining-negative, oxidase- and catalase-positive, non-motile, rod-shaped bacterium, designated strain 5416T-29T, was isolated from air and was characterized by using a polyphasic approach. Colonies were reddish pink and circular with entire margins. Flexirubin-type pigments were absent. The strain formed a distinct phylogenetic lineage within the family Cytophagaceae of the phylum Bacteroidetes. Strain 5416T-29T did not show more than 88 % 16S rRNA gene sequence similarity to the type strain of any recognized species. The major cellular fatty acids were C16 : 1 ω5c, iso-C17 : 0 3-OH and iso-C15 : 0. The polar lipids were phosphatidylethanolamine, one unknown amino lipid and several unknown polar lipids. Menaquinone-7 (MK-7) was the major respiratory quinone. The G+C content of the DNA of strain 5416T-29T was 45.5 mol%. Results of phenotypic and phylogenetic analyses clearly indicate that strain 5416T-29T represents a novel species of a new genus in the family Cytophagaceae, for which the name Rhodocytophaga aerolata gen. nov., sp. nov. is proposed. The type strain of Rhodocytophaga aerolata is 5416T-29T (=KACC 12507T =DSM 22190T).


2010 ◽  
Vol 60 (1) ◽  
pp. 229-233 ◽  
Author(s):  
Xuesong Luo ◽  
Zhang Wang ◽  
Jun Dai ◽  
Lei Zhang ◽  
Jun Li ◽  
...  

Two Gram-staining-negative, rod-shaped, non-spore-forming bacterial strains, 1-2T and 1-4 were isolated from dry riverbed soil collected from the Xietongmen area of Tibet, China. On the basis of 16S rRNA gene sequence similarity, the novel strains were shown to belong to the genus Pedobacter, sharing <95 % sequence similarity with all recognized species of the genus Pedobacter. The major respiratory quinone was MK-7 and the predominant cellular fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 3 (comprising iso-C16 : 1 ω7c and/or C16 : 1 ω6c). The DNA G+C contents were 37.2–37.6 mol%. Chemotaxonomic data supported the affiliation of the two new isolates to the genus Pedobacter and the results of physiological and biochemical tests confirmed that the new strains differed significantly from the recognized species of the genus Pedobacter. Therefore, the new isolates represent a novel species within the genus Pedobacter, for which the name Pedobacter glucosidilyticus sp. nov. is proposed. The type strain is 1-2T (=CCTCC AB 206110T=KCTC 22438T).


2015 ◽  
Vol 65 (Pt_12) ◽  
pp. 4563-4567 ◽  
Author(s):  
Minwook Kim ◽  
In-Tae Cha ◽  
Hae Won Lee ◽  
Kyung June Yim ◽  
Hye Seon Song ◽  
...  

Strain CBA3205T is a Gram-stain-negative, non-motile and rod-shaped bacterium that was isolated from the seashore sand of Jeju Island in South Korea. Based on the phylogenetic analysis, the most closed related species was Croceitalea eckloniae DOKDO 025T, with 94.8 % sequence similarity for the 16S rRNA gene. Strain CBA3205T was observed to grow optimally at 25–30 °C and at pH 8.5 in the presence of 2–3 % (w/v) NaCl. The major fatty acids of strain CBA3205T were iso-C15 : 0, iso-C15 : 1 G, and iso-C17 : 0 3-OH. The major respiratory quinone was MK-6 and the major polar lipids were two unidentified amino-group-containing phospholipids and an unidentified polar lipid. The G+C content of the genomic DNA of strain CBA3205T was 62.5 mol%. Based on the phenotypic, genotypic and phylogenetic analyses, strain CBA3205T was considered to be a novel species belonging to the genus Croceitalea within the family Flavobacteriaceae, for which the name Croceitalea litorea sp. nov. is proposed. The type strain is CBA3205T ( = KACC 17669T = JCM 19531T).


2011 ◽  
Vol 61 (2) ◽  
pp. 343-346 ◽  
Author(s):  
Yi-Ping Xiao ◽  
Wei Hui ◽  
Jung-Sook Lee ◽  
Keun Chul Lee ◽  
Zhe-Xue Quan

Two strains of Gram-reaction-negative, rod-shaped, non-spore-forming, non-motile, aerobic bacteria, designated LW30T and LW29, were isolated from the rhizosphere of a wetland reed in Dongtan, Chongming Island, China. The strains formed pale-yellow colonies on R2A plates. Growth occurred at 4–37 °C (optimum 30 °C), at pH 6–9 (optimum pH 7–8) and in the presence of 0–3 % (w/v) NaCl (optimum 0–1 %). Oxidase and catalase activities and flexirubin-type pigments were absent. MK-6 was the major respiratory quinone. The major fatty acids were iso-C15 : 0, C15 : 0, iso-C15 : 1 G and iso-C17 : 1 ω9c. Strains LW30T and LW29 could be differentiated from related species by several phenotypic characteristics. Phylogenetic analyses based on 16S rRNA gene sequences placed strains LW30T and LW29 in the genus Flavobacterium with high sequence similarity to Flavobacterium cheniae NJ-26T (94.0 %) and Flavobacterium indicium GPTSA 100-9T (93.9 %). Together with F. indicium GPTSA 100-9T, strains LW30T and LW29 formed a distinct group in the phylogenetic tree. The DNA G+C content was 30 mol%. On the basis of the phylogenetic and phenotypic evidence, strains LW30T and LW29 represent a novel species of the genus Flavobacterium, for which the name Flavobacterium dongtanense sp. nov. is proposed. The type strain is LW30T (=KCTC 22671T =CCTCC AB 209201T).


2011 ◽  
Vol 61 (7) ◽  
pp. 1539-1543 ◽  
Author(s):  
Byoung-Jun Yoon ◽  
Hoo-Dhon Byun ◽  
Ji-Young Kim ◽  
Dong-Heon Lee ◽  
Hyung-Yeel Kahng ◽  
...  

A novel Gram-negative, orange-pigmented, rod-shaped, strictly aerobic, gliding, oxidase- and catalase-positive bacterial strain, A73T, was isolated from seawater collected off Jeju, South Korea. 16S rRNA gene sequence similarity between A73T and type strains of Winogradskyella species with validly published names ranged from 94.1 to 96.2 %. The dominant fatty acids of strain A73T were iso-C15 : 1 G (19.1 %), iso-C15 : 0 (13.3 %), iso-C17 : 0 3-OH (10.0 %) and iso-C15 : 0 3-OH (7.2 %). The DNA G+C content of strain A73T was 36.0 mol% and its major respiratory quinone was MK-6. On the basis of combined data from phenotypic and phylogenetic analyses, strain A73T represents a novel species of the genus Winogradskyella, for which the name Winogradskyella lutea sp. nov. is proposed. The type strain is A73T ( = KCTC 23237T  = DSM 22624T). An emended description of the genus Winogradskyella is also provided.


Author(s):  
Mi Li ◽  
Chenghai Gao ◽  
Yuyao Feng ◽  
Kai Liu ◽  
Pei Cao ◽  
...  

AbstractStrain BGMRC 2036T was isolated from rhizosphere soil of Bruguiear gymnorrhiza collected from the Beibu Gulf of China. Optimum growth occurred at 28 °C, pH 7.0, and under the conditions of 3–5% (w/v) NaCl. The phylogenetic comparisons of 16S rRNA gene sequences displayed that strain BGMRC 2036T was closely related to Martelella limonii NBRC109441T (96.6% sequence similarity), M. mediterranea CGMCC 1.12224T (96.5%), M. lutilitoris GH2-6T (96.5%), M. radicis BM5-7T (96.2%), and M. mangrove BM9-1T (95.9%), M. suaedae NBRC109440T (95.8%). The phylogenomic tree based on the up-to-date bacterial core gene set indicated that the strain BGMRC 2036T form a clade formed with members of the genera Martelella. The major polar lipids include phosphatidylmethylethanolamine, phosphatidylglycerol, phosphatidylcholine, phosphotidylinositol, two unidentified phospholipids, and three unidentified ninhydrin positive phospholipids. The major respiratory quinone is Q-10, which is similar to those of genera Martelella. The main cellular fatty acids are C18:1ω7c, C16:0, and C12:0 aldehyde. Genome sequencing revealed a genome size of 4.99 Mbp and a G + C content of 62.3 mol%. Pairwise comparison of the genomes of the new strain BGMRC 2036T and the three reference strains M. endophytica YC 6887T, M. mediterranea CGMCC 1.12224T, and M. mangrovi USBA-857 indicated that gANI value was lower than 81% and a digital DNA–DNA hybridization value was lower than 27%. The strain BGMRC 2036T possessed genes putatively encoding riboflavin synthesis and flavodoxin A polyphasic taxonomic study suggested that strain BGMRC 2036T represented a novel species belonging to the genus Martelella, and it was named Martelella alba sp. nov. The type strain is BGMRC 2036T (=KCTC 52121T =NBRC 111908T).


Author(s):  
Xian-Jiao Zhang ◽  
Guang-Da Feng ◽  
Fan Yang ◽  
Honghui Zhu ◽  
Qing Yao

A Gram-stain-negative, aerobic and rod-shaped bacterium, designated as strain B61T, was isolated from rhizosphere soil of banana collected from Dongguan, Guangdong Province, PR China. Growth occurred at 15–40 °C, within a pH range of pH 6.0–9.0. Results of 16S rRNA gene sequence similarity and phylogenetic analyses showed that strain B61T was most closely related to ‘Chitinophaga agri’ KACC 21303 (98.9 %) and Chitinophaga pinensis DSM 2588T (98.8 %). The genome size was 7.6 Mb with a G+C content of 45.2 mol%. The genome-inferred average nucleotide identity values between strain B61T and two closely related strains were 79.2 and 79.3 %, respectively, with corresponding digital DNA–DNA hybridization values of 22.3 and 22.6 %. The major fatty acids of the novel strain were iso-C15:0, C16:1 ω5c and iso-C17:0 3-OH and the sole respiratory quinone was menaquinone 7 (MK-7). The polar lipids consisted of phosphatidylethanolamine, five unidentified aminolipids, four unidentified glycolipids and six unidentified lipids. The phenotypic and phylogenetic results clearly supported that strain B61T represents a novel species of the genus Chitinophaga , for which the name Chitinophaga rhizophila, sp. nov. is proposed, with the type strain B61T (=GDMCC 1.2608T=KCTC 82856T).


2006 ◽  
Vol 56 (5) ◽  
pp. 1059-1065 ◽  
Author(s):  
Stanley C. K. Lau ◽  
Mandy M. Y. Tsoi ◽  
Xiancui Li ◽  
Ioulia Plakhotnikova ◽  
Sergey Dobretsov ◽  
...  

Bacterial strains UST030701-097T and UST030701-084T were isolated from a marine sponge in the Bahamas. Both strains were pink-pigmented, Gram-negative, strictly aerobic and chemo-organotrophic. Cells of strain UST030701-097T were short, curved rods with fast-gliding motility, whereas those of strain UST030701-084T were straight rods with a less rapid gliding motion. The two strains had MK-7 as the major respiratory quinone and did not produce flexirubin-type pigments. The DNA G+C contents of strains UST030701-097T and UST030701-084T were 42.5 and 43.7 mol%, respectively. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the two strains belonged to the family ‘Flexibacteraceae’ of the phylum Bacteroidetes. 16S rRNA gene sequence similarity between strains UST030701-097T and UST030701-084T was 95.0 %; their closest relative was [Marinicola] seohaensis, with 93.3 % and 96.0 % sequence similarity, respectively. Phylogenetic tree topology indicated that the two strains belonged to the same lineage, but were on separate branches. Whilst strain UST030701-084T and [Marinicola] seohaensis were found on one branch, strain UST030701-097T was in another branch that had no species with validly published names. Based on the polyphasic taxonomic data obtained in the present study, we propose that strain UST030701-097T represents a novel genus and that strain UST030701-084T represents a novel species in the phylum Bacteroidetes. The genus Fabibacter gen. nov. is proposed, with strain UST030701-097T (=NRRL B-41220T=JCM 13334T) as the type strain of the type species, Fabibacter halotolerans sp. nov. Strain UST030701-084T (=NRRL B-41219T=JCM 13337T) is proposed as the type strain of Roseivirga spongicola sp. nov. In an earlier study, it was suggested that the genus Marinicola is a later heterotypic synonym of the genus Roseivirga. However, a formal proposal to reclassify [Marinicola] seohaensis, the only member of the genus Marinicola, has not yet been made. The results of phylogenetic analyses in this study support the reclassification of [Marinicola] seohaensis as Roseivirga seohaensis comb. nov.


Sign in / Sign up

Export Citation Format

Share Document