scholarly journals Winogradskyella lutea sp. nov., isolated from seawater, and emended description of the genus Winogradskyella

2011 ◽  
Vol 61 (7) ◽  
pp. 1539-1543 ◽  
Author(s):  
Byoung-Jun Yoon ◽  
Hoo-Dhon Byun ◽  
Ji-Young Kim ◽  
Dong-Heon Lee ◽  
Hyung-Yeel Kahng ◽  
...  

A novel Gram-negative, orange-pigmented, rod-shaped, strictly aerobic, gliding, oxidase- and catalase-positive bacterial strain, A73T, was isolated from seawater collected off Jeju, South Korea. 16S rRNA gene sequence similarity between A73T and type strains of Winogradskyella species with validly published names ranged from 94.1 to 96.2 %. The dominant fatty acids of strain A73T were iso-C15 : 1 G (19.1 %), iso-C15 : 0 (13.3 %), iso-C17 : 0 3-OH (10.0 %) and iso-C15 : 0 3-OH (7.2 %). The DNA G+C content of strain A73T was 36.0 mol% and its major respiratory quinone was MK-6. On the basis of combined data from phenotypic and phylogenetic analyses, strain A73T represents a novel species of the genus Winogradskyella, for which the name Winogradskyella lutea sp. nov. is proposed. The type strain is A73T ( = KCTC 23237T  = DSM 22624T). An emended description of the genus Winogradskyella is also provided.

2012 ◽  
Vol 62 (Pt_3) ◽  
pp. 545-549 ◽  
Author(s):  
Zhe Qu ◽  
Zhao Li ◽  
Xiuming Zhang ◽  
Xiao-Hua Zhang

A novel Gram-stain-positive, white-pigmented, non-motile, non-sporulating, catalase- and oxidase-positive, strictly aerobic coccus, designated strain ZXM223T, was isolated from a seawater sample collected from the coast of Qingdao, PR China, during a green algal bloom. It grew at pH 6.0–10.5 and 0–25.0 % (w/v) NaCl, with optimum growth at pH 8.5 and 3.0 % (w/v) NaCl. Growth occurred at 16–42 °C (optimum at 28 °C). The major fatty acids were anteiso-C15 : 0 and iso-C15 : 0. Menaquinone 6 (MK-6) was the major respiratory quinone. The polar lipids were phosphatidylglycerol, three unidentified phospholipids and two unknown glycolipids. The peptidoglycan type was l-Lys–Gly5–6. The genomic DNA G+C content was 43.5 mol%. Phylogenetic analysis of the 16S rRNA gene sequence placed strain ZXM223T within the genus Salinicoccus, with sequence similarity of 92.2–97.1 % between ZXM223T and the type strains of this genus. The closest relatives were Salinicoccus kunmingensis YIM Y15T, ‘S. salitudinis’ YIM-C678 and S. alkaliphilus T8T. The DNA–DNA relatedness between strain ZXM223T and S. kunmingensis CGMCC 1.6302T and ‘S. salitudinis’ CGMCC 1.6299 ( = YIM-C678) was 37±3 and 30±2 %, respectively. The phenotypic, chemotaxonomic and phylogenetic characteristics and low DNA–DNA relatedness support the proposal of a novel species of the genus Salinicoccus, Salinicoccus qingdaonensis sp. nov., with the type strain ZXM223T ( = LMG 24855T  = CGMCC 1.8895T).


2010 ◽  
Vol 60 (3) ◽  
pp. 542-545 ◽  
Author(s):  
Kundi Zhang ◽  
Yang Wang ◽  
Yali Tang ◽  
Jun Dai ◽  
Lei Zhang ◽  
...  

A novel bacterial strain, designated THYL-44T, was isolated from the soil of a Euphrates poplar (Populus euphratica) forest in Xinjiang, China. The cells were strictly aerobic, Gram-staining-negative, non-flagellated, non-motile and filamentous. Growth occurred at 17–37 °C (optimum 30 °C), at pH 5.0–8.0 (optimum pH 7.0) and with 0–1 % NaCl (w/v; optimum 0 %). Flexirubin pigments were not produced. A phylogenetic analysis based on 16S rRNA gene sequences revealed that strain THYL-44T was closely related to Niastella koreensis KACC 11465T (95.5 % sequence similarity). The major respiratory quinone was MK-7 and the predominant cellular fatty acids were iso-C15 : 0 (28.6 %), iso-C17 : 0 3-OH (23.9 %) and iso-C15 : 1 G (17.4 %). The DNA G+C content was 45.2 mol%. Therefore, the phylogenetic, physiological and chemotaxonomic data demonstrated that strain THYL-44T represents a novel species of the genus Niastella, for which the name Niastella populi sp. nov. is proposed. The type strain is THYL-44T (=CCTCC AB 208238T=KCTC 22560T). On the basis of new data, an emended description of the genus Niastella is also proposed.


2010 ◽  
Vol 60 (7) ◽  
pp. 1554-1558 ◽  
Author(s):  
Rangasamy Anandham ◽  
Hang-Yeon Weon ◽  
Soo-Jin Kim ◽  
Yi-Seul Kim ◽  
Soon-Wo Kwon

A strictly aerobic, Gram-staining-negative, oxidase- and catalase-positive, non-motile, rod-shaped bacterium, designated strain 5416T-29T, was isolated from air and was characterized by using a polyphasic approach. Colonies were reddish pink and circular with entire margins. Flexirubin-type pigments were absent. The strain formed a distinct phylogenetic lineage within the family Cytophagaceae of the phylum Bacteroidetes. Strain 5416T-29T did not show more than 88 % 16S rRNA gene sequence similarity to the type strain of any recognized species. The major cellular fatty acids were C16 : 1 ω5c, iso-C17 : 0 3-OH and iso-C15 : 0. The polar lipids were phosphatidylethanolamine, one unknown amino lipid and several unknown polar lipids. Menaquinone-7 (MK-7) was the major respiratory quinone. The G+C content of the DNA of strain 5416T-29T was 45.5 mol%. Results of phenotypic and phylogenetic analyses clearly indicate that strain 5416T-29T represents a novel species of a new genus in the family Cytophagaceae, for which the name Rhodocytophaga aerolata gen. nov., sp. nov. is proposed. The type strain of Rhodocytophaga aerolata is 5416T-29T (=KACC 12507T =DSM 22190T).


2015 ◽  
Vol 65 (Pt_9) ◽  
pp. 2925-2930 ◽  
Author(s):  
Hai Li ◽  
Xi-Ying Zhang ◽  
Chang Liu ◽  
Ang Liu ◽  
Qi-Long Qin ◽  
...  

A Gram-stain-negative, yellow-pigmented, aerobic, non-flagellated, non-gliding bacterial strain, designated SM1203T, was isolated from surface seawater of Kongsfjorden, Svalbard. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain SM1203T was affiliated with the genus Bizionia in the family Flavobacteriaceae. The strain shared the highest 16S rRNA gene sequence similarity (>96  %) with the type strains of Formosa spongicola (96.8  %), Bizionia paragorgiae (96.3  %), B. saleffrena (96.3  %) and B. echini (96.1  %) and 95.4–95.7  % sequence similarity with the type strains of other known species of the genus Bizionia. The strain grew at 4–30 °C and in the presence of 1.0–5.0  % (w/v) NaCl. The major fatty acids of strain SM1203T were iso-C15  :  0, iso-C15  :  1, anteiso-C15  :  0 and C15  :  0 and the main polar lipids were phosphatidylethanolamine and an unidentified lipid. The major respiratory quinone of strain SM1203T was menaquinone 6 (MK-6). The genomic DNA G+C content of strain SM1203T was 34.8 mol%. Based on the polyphasic characterization of strain SM1203T in this study, the strain represents a novel species in the genus Bizionia, for which the name Bizionia arctica sp. nov. is proposed. The type strain is SM1203T ( = CGMCC 1.12751T = JCM 30333T). An emended description of the genus Bizionia is also given.


2013 ◽  
Vol 63 (Pt_4) ◽  
pp. 1360-1369 ◽  
Author(s):  
Takashi Iizuka ◽  
Yasuko Jojima ◽  
Atsushi Hayakawa ◽  
Takayoshi Fujii ◽  
Shigeru Yamanaka ◽  
...  

A myxobacterial strain, designated SYR-2T, was obtained from a mud sample from an estuarine marsh alongside the Yoshino River, Shikoku, Japan. It had rod-shaped vegetative cells and formed bacteriolytic enlarging colonies or so-called ‘swarms’ in the agar media. Fruiting-body-like globular to polyhedral cell aggregates and myxospore-like spherical to ellipsoidal cells within them were observed. Those features coincided with the general characteristics of myxobacteria. The strain was mesophilic and strictly aerobic. Growth of SYR-2T was observed at 18–40 °C (optimum, 30–35 °C), pH 5.5–8.3 (optimum, pH 7.0–7.5) and with 0.0–2.5 % (w/v) NaCl (optimum, 0.2–1.0 %). Both Mg2+ and Ca2+ were essential cations for the growth. The predominant fatty acids were iso-C15 : 0 (43.8 %), iso-C17 : 0 (22.4 %) and iso-C16 : 0 (9.6 %). A C20 : 4 fatty acid [arachidonic acid (4.3 %)], iso-C19 : 0 (1.5 %) and anteiso-acids [ai-C15 : 0 (0.5 %), ai-C17 : 0 (0.3 %)] were also detected. The G+C content of the DNA was 69.7 mol%. The strain contained menaquinone-7 (MK-7) as the major respiratory quinone. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain SYR-2T belonged to the suborder Nannocystineae , order Myxococcales in the class Deltaproteobacteria , and the strain was most closely related to two type strains of marine myxobacteria, Enhygromyxa salina SHK-1T and Plesiocystis pacifica SIR-1T, with 96.5 % and 96.0 % similarities, respectively. These characteristics determined in this polyphasic study suggested that strain SYR-2T represents a novel species in a new genus of myxobacteria. The name Pseudenhygromyxa salsuginis gen. nov., sp. nov. is proposed to accommodate this isolate, and the type strain of Pseudenhygromyxa salsuginis is SYR-2T ( = NBRC 104351T = DSM 21377T).


2012 ◽  
Vol 62 (2) ◽  
pp. 414-419 ◽  
Author(s):  
You-Sung Oh ◽  
Hyung-Yeel Kahng ◽  
Dong-Heon Lee ◽  
Sun Bok Lee

A Gram-staining-negative, strictly aerobic and rod-shaped bacterium, designated strain CNURIC013T, was isolated from seawater collected on the coast of Jeju Island, South Korea. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain CNURIC013T belonged to the genus Tenacibaculum, within the family Flavobacteriaceae. Sequence similarities between the novel strain and the type strains of recognized species of the genus Tenacibaculum were 93.6–96.0 %, the highest value being with Tenacibaculum litopenaei B-IT (96 %). The DNA G+C content of the novel strain was 34.5 mol% and the major respiratory quinone was menaquinone-6. The major fatty acids were summed feature 3 (comprising C16 : 1ω7c and/or iso-C15 : 0 2-OH; 26.0 %), iso-C15 : 0 (24.4 %), iso-C15 : 1 G (18.5 %) and iso-C17 : 0 3-OH (8.1 %). The polar lipids consisted of phosphatidylethanolamine, one unknown aminophospholipid and nine unknown polar lipids. On the basis of the phenotypic, phylogenetic and genotypic data, strain CNURIC013T represents a novel species within the genus Tenacibaculum, for which the name Tenacibaculum jejuense sp. nov. is proposed. The type strain is CNURIC013T ( = KCTC 22618T = JCM 15975T).


Author(s):  
Xiuqing Xue ◽  
Kundi Zhang ◽  
Feng Cai ◽  
Jun Dai ◽  
Yang Wang ◽  
...  

A Gram-negative, rod-shaped, non-motile, strictly aerobic bacterium, strain S3-63T, was isolated from desert sand of Xinjiang, China. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain S3-63T had highest similarity to type strains of the genus Altererythrobacter, i.e. Altererythrobacter marinus H32T (97.2 % similarity), Altererythrobacter marensis MSW-14T (95.9 %), Altererythrobacter aestuarii KCTC 22735T (95.5 %), Altererythrobacter epoxidivorans JCS350T (95.1 %), Altererythrobacter namhicola KCTC 22736T (95.1 %), Altererythrobacter luteolus SW-109T (95.0 %) and Altererythrobacter indicus LMG 23789T (93.5 %). Growth occurred at 20–37 °C (optimum 30 °C), at pH 7.0–9.0 (optimum pH 8.0) and in 0–3 % (w/v) NaCl (optimum 1 %). The major respiratory quinone was ubiquinone-10 and the predominant cellular fatty acids were C18 : 1ω7c (50.8 %), summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c; 12.6 %), C16 : 0 (12.3 %), C14 : 0 2-OH (7.3 %) and C17 : 1ω6c (4.5 %). The DNA G+C content was 64.6 mol%. Therefore, the phylogenetic, physiological and chemotaxonomic data demonstrated that strain S3-63T represents a novel species of the genus Altererythrobacter, for which the name Altererythrobacter xinjiangensis sp. nov. is proposed; the type strain is S3-63T ( = CCTCC AB 207166T = CIP 110125T). An emended description of the genus Altererythrobacter is provided.


2011 ◽  
Vol 61 (5) ◽  
pp. 1016-1022 ◽  
Author(s):  
Hui-Juan Li ◽  
Xi-Ying Zhang ◽  
Yan-Jiao Zhang ◽  
Ming-Yang Zhou ◽  
Zhao-Ming Gao ◽  
...  

A Gram-negative, facultatively aerobic, oxidase- and catalase-positive, rod-shaped bacterium, designated strain E407-8T, was isolated from a sediment sample from the South China Sea. Phylogenetic analysis of the 16S rRNA gene sequence revealed that strain E407-8T was affiliated with the genus Rheinheimera, sharing the highest sequence similarity with Rheinheimera pacifica KMM 1406T (97.5 %) and Rheinheimera aquimaris SW-353T (97.4 %) and showing less than 97 % sequence similarity to the type strains of other recognized Rheinheimera species. Levels of DNA–DNA relatedness of strain E407-8T to R. pacifica DSM 17616T and R. aquimaris JCM 14331T were 25.2 % (25.3 % in the duplicate measurement) and 9.4 % (6.5 %), respectively. The bacterium could grow at 10–48 °C (optimum 37 °C) and in the presence of 0–8 % (w/v) NaCl (optimum 0.5–2.5 %). The major cellular fatty acids of strain E407-8T were summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH), C17 : 1ω8c, C16 : 0 and C18 : 1ω7c. The predominant respiratory quinone was ubiquinone Q-8. The DNA G+C content was 51.0 mol%. Based on the results of our polyphasic taxonomic study, strain E407-8T represents a novel species in the genus Rheinheimera, for which the name Rheinheimera nanhaiensis sp. nov. is proposed. The type strain is E407-8T ( = CCTCC AB 209089T  = KACC 14030T). An emended description of the genus Rheinheimera Brettar et al. 2002 emend. Merchant et al. 2007 is also proposed.


2011 ◽  
Vol 61 (8) ◽  
pp. 1921-1926 ◽  
Author(s):  
Jin-Wei Zheng ◽  
Yi-Guang Chen ◽  
Jun Zhang ◽  
Ying-Ying Ni ◽  
Wen-Jun Li ◽  
...  

A novel non-sporulating, non-motile, catalase- and oxidase-positive, strictly aerobic, Gram-negative, rod-shaped bacterial strain, designated DCA-1T, was isolated from activated sludge collected from a butachlor wastewater treatment facility. The strain was able to degrade about 85 % of 100 mg butachlor l−1 within 5 days of incubation. Growth occurred in the presence of 0–6 % (w/v) NaCl [optimum, 1 % (w/v) NaCl] and at pH 5.5–9.0 (optimum, pH 7.0) and 15–35 °C (optimum, 25–30 °C). Vesicular internal membrane structures and photoheterotrophic growth were not observed. The major respiratory quinone was ubiquinone 10 (Q-10) and the major cellular fatty acids were C18 : 1ω7c and 11-methyl C18 : 1ω7c. The genomic DNA G+C content of strain DCA-1T was 62.5 mol%. Phylogenetic analysis based on 16S rRNA gene sequence comparison revealed that strain DCA-1T was a member of the family Rhodobacteraceae and was related most closely to the type strain of Catellibacterium aquatile (96.5 % sequence similarity). The combination of phylogenetic analysis, phenotypic characteristics and chemotaxonomic data supports the suggestion that strain DCA-1T represents a novel species of the genus Catellibacterium, for which the name Catellibacterium caeni sp. nov. is proposed. The type strain is DCA-1T ( = CGMCC 1.7745T  = DSM 21823T). In addition, based on the characterization data obtained in this study, it is proposed that Rhodobacter changlensis should be reclassified as Catellibacterium changlense comb. nov. (type strain JA139T  = DSM 18774T  = CCUG 53722T  = JCM 14338T). An emended description of the genus Catellibacterium is also presented.


2015 ◽  
Vol 65 (Pt_8) ◽  
pp. 2516-2521 ◽  
Author(s):  
Yena Kim ◽  
Jong-Hwa Kim ◽  
Keun Chul Lee ◽  
Jung-Sook Lee ◽  
Wonyong Kim

A Gram-stain-negative, strictly aerobic, non-motile, non-spore-forming, short rod-shaped and moderately halophilic bacterial strain, CAU 1105T, was isolated from soil on reclaimed tidal land in Modo, Republic of Korea, and its taxonomic position was investigated using a polyphasic approach. Strain CAU 1105T grows optimally at a temperature of 37 °C at pH 7 in the presence of 3 % (w/v) sea salt. Based on 16S rRNA gene sequence similarity analyses, the novel isolate was assigned to the genus Palleronia within the class Alphaproteobacteria and showed the highest 16S rRNA gene sequence similarity with Palleronia marisminoris B33T (95.4 %). Strain CAU 1105T contained ubiquinone-10 as the only respiratory quinone and C18 : 1ω7c as the major cellular fatty acid. The DNA G+C content of strain CAU 1105T was 64.3 mol%. On the basis of phenotypic differentiation, phylogenetic and chemotaxonomic data, strain CAU 1105T represents a novel species of the genus Palleronia, for which the name Palleronia soli sp. nov. is proposed. The type strain is CAU 1105T ( = KCTC 42298T = NBRC 110740T). An emended description of the genus Palleronia is also provided.


Sign in / Sign up

Export Citation Format

Share Document