riboflavin synthesis
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 7)

H-INDEX

16
(FIVE YEARS 1)

Author(s):  
Asako Chiba ◽  
Goh Murayama ◽  
Sachiko Miyake

Abstract Mucosal-associated invariant T (MAIT) cells are a subset of innate-like T cells that express a semi-invariant T cell receptor and are restricted by the molecule major histocompatibility complex class I-related molecule 1 (MR1). MAIT cells recognize biosynthetic derivatives of the riboflavin synthesis pathway present in microbes. MAIT cells have attracted increased interest related to various immune responses because of their unique features including their abundance in humans, nonpeptidic antigens, and ability to respond to antigenic and non-antigenic stimuli. The numbers of circulating MAIT cells are decreased in many immune diseases such as multiple sclerosis, systemic lupus erythematosus, and inflammatory bowel diseases. However, the remaining MAIT cells have an increased cytokine-producing capacity and activated status, which is related to disease activity. Additionally, MAIT cells have been observed at sites of inflammation including the kidneys, synovial fluid and intestinal mucosa. These findings suggest their involvement in the pathogenesis of immune diseases. In this mini-review, we summarize the recent findings of MAIT cells in human immune diseases and animal models, and discuss their role and potential as a therapeutic target.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4506
Author(s):  
Sunjoo Lim ◽  
Eugeney Oh ◽  
Miae Choi ◽  
Euiho Lee ◽  
Chan-Yong Lee

Lumazine protein is a member of the riboflavin synthase superfamily and the intense fluorescence is caused by non-covalently bound to 6,7-dimethyl 8-ribityllumazine. The pRFN4 plasmid, which contains the riboflavin synthesis genes from Bacillus subtilis, was originally designed for overproduction of the fluorescent ligand of 6,7-dimethyl 8-ribityllumazine. To provide the basis for a biosensor based on the lux gene from bioluminescent bacteria of Photobacterium leiognathi, the gene coding for N-terminal domain half of the lumazine protein extending to amino acid 112 (N-LumP) and the gene for whole lumazine protein (W-LumP) from P. leiognathi were introduced by polymerase chain reaction (PCR) and ligated into pRFN4 vector, to construct the recombinant plasmids of N-lumP-pRFN4 and W-lumP-pRFN4 as well as their modified plasmids by insertion of the lux promoter. The expression of the genes in the recombinant plasmids was checked in various Escherichia coli strains, and the fluorescence intensity in Escherichia coli 43R can even be observed in a single cell. These results concerning the co-expression of the genes coding for lumazine protein and for riboflavin synthesis raise the possibility to generate fluorescent bacteria which can be used in the field of bio-imaging.


Author(s):  
Mi Li ◽  
Chenghai Gao ◽  
Yuyao Feng ◽  
Kai Liu ◽  
Pei Cao ◽  
...  

AbstractStrain BGMRC 2036T was isolated from rhizosphere soil of Bruguiear gymnorrhiza collected from the Beibu Gulf of China. Optimum growth occurred at 28 °C, pH 7.0, and under the conditions of 3–5% (w/v) NaCl. The phylogenetic comparisons of 16S rRNA gene sequences displayed that strain BGMRC 2036T was closely related to Martelella limonii NBRC109441T (96.6% sequence similarity), M. mediterranea CGMCC 1.12224T (96.5%), M. lutilitoris GH2-6T (96.5%), M. radicis BM5-7T (96.2%), and M. mangrove BM9-1T (95.9%), M. suaedae NBRC109440T (95.8%). The phylogenomic tree based on the up-to-date bacterial core gene set indicated that the strain BGMRC 2036T form a clade formed with members of the genera Martelella. The major polar lipids include phosphatidylmethylethanolamine, phosphatidylglycerol, phosphatidylcholine, phosphotidylinositol, two unidentified phospholipids, and three unidentified ninhydrin positive phospholipids. The major respiratory quinone is Q-10, which is similar to those of genera Martelella. The main cellular fatty acids are C18:1ω7c, C16:0, and C12:0 aldehyde. Genome sequencing revealed a genome size of 4.99 Mbp and a G + C content of 62.3 mol%. Pairwise comparison of the genomes of the new strain BGMRC 2036T and the three reference strains M. endophytica YC 6887T, M. mediterranea CGMCC 1.12224T, and M. mangrovi USBA-857 indicated that gANI value was lower than 81% and a digital DNA–DNA hybridization value was lower than 27%. The strain BGMRC 2036T possessed genes putatively encoding riboflavin synthesis and flavodoxin A polyphasic taxonomic study suggested that strain BGMRC 2036T represented a novel species belonging to the genus Martelella, and it was named Martelella alba sp. nov. The type strain is BGMRC 2036T (=KCTC 52121T =NBRC 111908T).


2020 ◽  
Vol 54 (5) ◽  
pp. 408-412
Author(s):  
Y. Petrovska ◽  
O. Lyzak ◽  
K. Dmytruk ◽  
A. Sibirny

Yeast ◽  
2020 ◽  
Vol 37 (9-10) ◽  
pp. 497-504
Author(s):  
Yuliia Andreieva ◽  
Yana Petrovska ◽  
Oleksii Lyzak ◽  
Wen Liu ◽  
Yingqian Kang ◽  
...  

2019 ◽  
Vol 4 (41) ◽  
pp. eaaw0402 ◽  
Author(s):  
Huimeng Wang ◽  
Lars Kjer-Nielsen ◽  
Mai Shi ◽  
Criselle D’Souza ◽  
Troi J. Pediongco ◽  
...  

Mucosal-associated invariant T (MAIT) cells are activated in a TCR-dependent manner by antigens derived from the riboflavin synthesis pathway, including 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil (5-OP-RU), bound to MHC-related protein-1 (MR1). However, MAIT cell activation in vivo has not been studied in detail. Here, we have found and characterized additional molecular signals required for optimal activation and expansion of MAIT cells after pulmonary Legionella or Salmonella infection in mice. We show that either bone marrow–derived APCs or non–bone marrow–derived cells can activate MAIT cells in vivo, depending on the pathogen. Optimal MAIT cell activation in vivo requires signaling through the inducible T cell costimulator (ICOS), which is highly expressed on MAIT cells. Subsequent expansion and maintenance of MAIT-17/1-type responses are dependent on IL-23. Vaccination with IL-23 plus 5-OP-RU augments MAIT cell–mediated control of pulmonary Legionella infection. These findings reveal cellular and molecular targets for manipulating MAIT cell function under physiological conditions.


2017 ◽  
Author(s):  
Huimeng Wang ◽  
Criselle D’Souza ◽  
Xin Yi Lim ◽  
Lyudmila Kostenko ◽  
Troi J Pediongco ◽  
...  

AbstractMucosal associated invariant T (MAIT) cells recognize conserved microbial metabolites from riboflavin synthesis. Striking evolutionary conservation and pulmonary abundance implicate them in antibacterial host defense, yet their roles in protection against clinically significant pathogens are unknown. Murine Legionella infection induced MR1-dependent MAIT cell activation and rapid pulmonary accumulation of MAIT cells associated with immune protection detectable in fully immunocompetent host animals. MAIT cell protection was more evident in mice lacking CD4+ cells, whilst profoundly immunodeficient RAG2−/−γC−/− mice were substantially rescued from uniformly lethal Legionella infection by adoptively-transferred MAIT cells. This protection was dependent on MR1, IFN-γ and GM-CSF, but not IL-17, TNF-α or perforin. Protection was enhanced and observed earlier post-infection in mice that were Ag-primed to boost MAIT cells before infection. Our findings define a significant role for MAIT cells in protection against a major human pathogen and indicate a potential role for vaccination to enhance MAIT cell immunity.


Sign in / Sign up

Export Citation Format

Share Document