scholarly journals Martelella alba sp. nov., isolated from mangrove rhizosphere soil within the Beibu Gulf

Author(s):  
Mi Li ◽  
Chenghai Gao ◽  
Yuyao Feng ◽  
Kai Liu ◽  
Pei Cao ◽  
...  

AbstractStrain BGMRC 2036T was isolated from rhizosphere soil of Bruguiear gymnorrhiza collected from the Beibu Gulf of China. Optimum growth occurred at 28 °C, pH 7.0, and under the conditions of 3–5% (w/v) NaCl. The phylogenetic comparisons of 16S rRNA gene sequences displayed that strain BGMRC 2036T was closely related to Martelella limonii NBRC109441T (96.6% sequence similarity), M. mediterranea CGMCC 1.12224T (96.5%), M. lutilitoris GH2-6T (96.5%), M. radicis BM5-7T (96.2%), and M. mangrove BM9-1T (95.9%), M. suaedae NBRC109440T (95.8%). The phylogenomic tree based on the up-to-date bacterial core gene set indicated that the strain BGMRC 2036T form a clade formed with members of the genera Martelella. The major polar lipids include phosphatidylmethylethanolamine, phosphatidylglycerol, phosphatidylcholine, phosphotidylinositol, two unidentified phospholipids, and three unidentified ninhydrin positive phospholipids. The major respiratory quinone is Q-10, which is similar to those of genera Martelella. The main cellular fatty acids are C18:1ω7c, C16:0, and C12:0 aldehyde. Genome sequencing revealed a genome size of 4.99 Mbp and a G + C content of 62.3 mol%. Pairwise comparison of the genomes of the new strain BGMRC 2036T and the three reference strains M. endophytica YC 6887T, M. mediterranea CGMCC 1.12224T, and M. mangrovi USBA-857 indicated that gANI value was lower than 81% and a digital DNA–DNA hybridization value was lower than 27%. The strain BGMRC 2036T possessed genes putatively encoding riboflavin synthesis and flavodoxin A polyphasic taxonomic study suggested that strain BGMRC 2036T represented a novel species belonging to the genus Martelella, and it was named Martelella alba sp. nov. The type strain is BGMRC 2036T (=KCTC 52121T =NBRC 111908T).

2011 ◽  
Vol 61 (10) ◽  
pp. 2389-2394 ◽  
Author(s):  
Eu Jin Chung ◽  
Eun Ju Jo ◽  
Hwan Sik Yoon ◽  
Geun Cheol Song ◽  
Che Ok Jeon ◽  
...  

Two Gram-reaction-negative, yellow–orange-pigmented, rod-shaped bacterial strains, designated YC6722T and YC6723T, were isolated from rhizosphere soil samples collected from rice fields in Jinju, Korea. Strains YC6722T and YC6723T grew optimally at 25–30 °C and at pH 7.0–8.5. Phylogenetic analyses of 16S rRNA gene sequences showed that strain YC6722T was most closely related to Sphingomonas jaspsi TDMA-16T (96.6 % sequence similarity) and strain YC6723T was related most closely to Sphingomonas aquatilis JSS7T (96.9 %). The two strains contained ubiquinone-10 (Q-10) as the major respiratory quinone system and sym-homospermidine as the major polyamine. The G+C contents of the genomic DNA of strains YC6722T and YC6723T were 63.3 and 61.0 mol%, respectively. The major fatty acid was C18 : 1ω7c. The polar lipids detected in the two strains were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, sphingoglycolipid, phosphatidyldimethylethanolamine and other unknown lipids. On the basis of their phylogenetic positions, and their biochemical and phenotypic characteristics, strains YC6722T and YC6723T represent two novel species of the genus Sphingomonas, for which the names Sphingomonas oryziterrae sp. nov. ( = KCTC 22476T  = DSM 21455T) and Sphingomonas jinjuensis sp. nov. (KCTC 22477T  = DSM 21457T) are proposed.


2007 ◽  
Vol 57 (2) ◽  
pp. 250-254 ◽  
Author(s):  
Jun Gu ◽  
Hua Cai ◽  
Su-Lin Yu ◽  
Ri Qu ◽  
Bin Yin ◽  
...  

Two novel strains, SL014B61AT and SL014B11A, were isolated from an oil-polluted saline soil from Gudao in the coastal Shengli Oilfield, eastern China. Cells of strains SL014B61AT and SL014B11A were motile, Gram-negative and rod-shaped. Growth occurred at NaCl concentrations of between 0 and 15 % and at temperatures of between 10 and 45 °C. Strain SL014B61AT had Q9 as the major respiratory quinone and C16 : 0 (21.2 %), C18 : 1ω9c (20.3 %), C16 : 1ω7c (7.3 %) and C16 : 1ω9c (6.4 %) as predominant fatty acids. The G+C content of the DNA was 57.9 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain SL014B61AT belonged to the genus Marinobacter in the class Gammaproteobacteria. Strain SL014B61AT showed the highest 16S rRNA gene sequence similarity with Marinobacter bryozoorum (97.9 %) and showed 97.8 % sequence similarity to Marinobacter lipolyticus. DNA–DNA relatedness to the reference strains Marinobacter bryozoorum and Marinobacter lipolyticus was 35.5 % and 33.8 %, respectively. On the basis of these data, it is proposed that strains SL014B61AT and SL014B11A represent a novel species, Marinobacter gudaonensis sp. nov. The type strain is strain SL014B61AT (=DSM 18066T=LMG 23509T=CGMCC 1.6294T).


2010 ◽  
Vol 60 (12) ◽  
pp. 2996-3001 ◽  
Author(s):  
Shi-Ping Tian ◽  
Yong-Xia Wang ◽  
Bin Hu ◽  
Xiao-Xia Zhang ◽  
Wei Xiao ◽  
...  

A novel alkaliphilic, halotolerant, rod-shaped bacterium, designated strain YIM CH208T, was isolated from a soda lake in Yunnan, south-west China. The taxonomy of strain YIM CH208T was investigated by a polyphasic approach. Strain YIM CH208T was Gram-negative, strictly aerobic and non-motile and formed red colonies. Optimal growth conditions were 28 °C, pH 8.5 and 0.5–2.5 % NaCl. Phylogenetic analysis based on 16S rRNA gene sequence comparisons showed that the isolate formed a distinct line within a clade containing the genus Echinicola in the phylum Bacteroidetes and was related to the species Echinicola pacifica and Rhodonellum psychrophilum, with sequence similarity of 91.7 and 91.6 % to the respective type strains. The DNA G+C content was 45.1 mol%. The major respiratory quinone was menaquinone-7 (MK-7). The predominant cellular fatty acids were iso-C17 : 1 ω9c (19.9 %), C15 : 0 3-OH (12.1 %), iso-C17 : 0 3-OH (11.3 %), summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1 ω7c; 10.7 %) and C17 : 1 ω6c (8.7 %). On the basis of the phenotypic, chemotaxonomic and phylogenetic data, strain YIM CH208T represents a novel species of a new genus, for which the name Litoribacter ruber gen. nov., sp. nov. is proposed. The type strain of Litoribacter ruber is YIM CH208T (=ACCC 05414T =KCTC 22899T).


2011 ◽  
Vol 61 (11) ◽  
pp. 2734-2739 ◽  
Author(s):  
Chae-Sung Lim ◽  
Yong-Sik Oh ◽  
Jae-Kwan Lee ◽  
A-Rum Park ◽  
Jae-Soo Yoo ◽  
...  

A yellow-pigmented, Gram-staining-negative, non-motile, strictly aerobic and rod-shaped bacterium, designated CS100T, was isolated from soil in Chungbuk, Korea. Phylogenetic analysis and comparative studies based on the 16S rRNA gene sequence showed that strain CS100T belonged to the genus Flavobacterium in the family Flavobacteriaceae. Strain CS100T showed the highest sequence similarities to Flavobacterium glaciei JCM 13953T (97.6 %) and Flavobacterium johnsoniae KACC 11410T (97.1 %). Sequence similarity to other members of the genus Flavobacterium was 91.5–97.0 %. Growth occurred at 4–30 °C, at pH 5.0–9.0 and in the presence of 0–2 % (w/v) NaCl. Flexirubin-type pigments were produced. Menaquinone-6 (MK-6) was the major respiratory quinone and the major fatty acids were iso-C15 : 0 (17.3 %), summed feature 3 (comprising iso-C15 : 0 2-OH and/or C16 : 1ω7c, 15.5 %) and C16 : 0 (11.8 %). The DNA G+C content was 36.4 mol%. Strain CS100T hydrolysed skimmed milk and gelatin, but not chitin or pectin, and showed oxidase and catalase activities. DNA–DNA relatedness was 3.0 % with F. glaciei JCM 13953T and 11.5 % with F. johnsoniae KACC 11410T. On the basis of the evidence from this study, strain CS100T represents a novel species of the genus Flavobacterium, for which the name Flavobacterium chungbukense sp. nov. is proposed. The type strain is CS100T ( = KACC 15048T = JCM 17386T).


2015 ◽  
Vol 65 (Pt_9) ◽  
pp. 3131-3136 ◽  
Author(s):  
Hina Singh ◽  
Juan Du ◽  
Kyung-Hwa Won ◽  
Jung-Eun Yang ◽  
Shahina Akter ◽  
...  

A novel bacterial strain, designated THG-PC7T, was isolated from fallow farmland soil in Yongin, South Korea. Cells of strain THG-PC7T were Gram-stain-negative, dark yellow, aerobic, rod-shaped and had gliding motility. Strain THG-PC7T grew optimally at 25–35 °C, at pH 7 and in the absence of NaCl. Comparative 16S rRNA gene sequence analysis identified strain THG-PC7T as belonging to the genus Lysobacter, exhibiting highest sequence similarity with Lysobacter ximonensis KCTC 22336T (98.7 %) followed by Lysobacter niastensis KACC 11588T (95.7 %). In DNA–DNA hybridization tests, DNA relatedness between strain THG-PC7T and its closest phylogenetic neighbour L. ximonensis was below 25 %. The DNA G+C content of the novel isolate was determined to be 62.5 mol%. Flexirubin-type pigments were found to be present. The major cellular fatty acids were determined to be iso-C15 : 0, iso-C16 : 0, anteiso-C15 : 0 and iso-C17 : 1ω9c. The major respiratory quinone was identified as ubiquonone-8 (Q8). The predominant polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and an unidentified aminophospolipid. On the basis of results from DNA–DNA hybridization and the polyphasic data, strain THG-PC7T represents a novel species of the genus Lysobacter, for which the name Lysobacter novalis sp. nov. is proposed. The type strain is THG-PC7T( = KACC 18276T = CCTCC AB 2014319T).


2011 ◽  
Vol 61 (7) ◽  
pp. 1715-1719 ◽  
Author(s):  
Sang-Hoon Baek ◽  
Yingshun Cui ◽  
Sun-Chang Kim ◽  
Chang-Hao Cui ◽  
Chengri Yin ◽  
...  

A Gram-reaction-positive, rod-shaped, spore-forming bacterium, designated Gsoil 1105T, was isolated from soil of a ginseng field in Pocheon Province in South Korea and characterized in order to determine its taxonomic position. Comparative analysis of the 16S rRNA gene sequence showed that the isolate belongs to the order Bacillales, showing the highest level of sequence similarity with respect to Tumebacillus permanentifrigoris Eur1 9.5T (94.6 %). The phylogenetic distances from other described species with validly published names within the order Bacillales were greater than 9.0 %. Strain Gsoil 1105T had a genomic DNA G+C content of 55.6 mol% and menaquinone 7 (MK-7) as the major respiratory quinone. The major fatty acids were iso-C15 : 0 and anteiso-C15 : 0. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain Gsoil 1105T represents a novel species of the genus Tumebacillus, for which the name Tumebacillus ginsengisoli sp. nov. is proposed. The type strain is Gsoil 1105T ( = KCTC 13942T  = DSM 18389T).


2007 ◽  
Vol 57 (9) ◽  
pp. 2014-2020 ◽  
Author(s):  
Gundlapally S. N. Reddy ◽  
Ruth M. Potrafka ◽  
Ferran Garcia-Pichel

A novel isolate, CP153-2T, was obtained from topsoil biological crusts in the Colorado Plateau (USA). Colonies were black in colour due to melanin-like pigments when grown on oligotrophic medium, but not when grown on copiotrophic medium. Induction of melanogenesis was independent of growth phase or illumination conditions, including exposure to UVB and UVA radiation, but exposure to UVB could enhance total pigment production and growth under low nitrogen prevented its synthesis. This mode of regulation was previously unknown among melanin-producing bacteria. Polyphasic characterization of the strain revealed that cells were short, straight to curved or irregular rods that developed into pairs and formed multiseptate short filaments, with rare bud-like cells. Short rods were typically motile by means of flagella; multicellular structures tended to be sessile. Cells stained Gram-positive, grew at 4–30 °C and had a narrow range of pH tolerance (pH 5–9). The major fatty acids were iso-C15:0 iso-C16 : 0, anteiso-C15 : 0 and C18 : 1; MK-9(H4) was the major respiratory quinone. Its peptidoglycan contained meso-diaminopimelic acid. Based on 16S rRNA gene sequence similarity data, its closest relative (98.1 % similarity) was Modestobacter multiseptatus DSM 44406T, which is similar morphologically. Based on the above characteristics, strain CP153-2T was also assigned to the genus Modestobacter. However, CP153-2T had a relatedness of only 49.9 % in whole-genome reassociation comparisons with the type strain of M. multiseptatus and thus formally represents a novel species, for which the name Modestobacter versicolor sp. nov. is proposed. Additional evidence in support of a novel species comes from phenotypic and chemotaxonomic characteristics. Strain CP153-2T (=ATCC BAA-1040T =DSM 16678T) is the type strain of M. versicolor.


2013 ◽  
Vol 63 (Pt_12) ◽  
pp. 4484-4488 ◽  
Author(s):  
R. Kathiravan ◽  
S. Jegan ◽  
V. Ganga ◽  
V. R. Prabavathy ◽  
L. Tushar ◽  
...  

The taxonomic position of strain MSSRFBL1T, isolated from chickpea rhizosphere soil from Kannivadi, India, was determined. Strain MSSRFBL1T formed bluish black colonies, stained Gram-negative and was motile, aerobic, capable of fixing dinitrogen, oxidase-negative and catalase-positive. Q-10 was the major respiratory quinone. Major fatty acids of strain MSSRFBL1T were C18 : 1ω7c and C19 : 0cycloω8c. Minor amounts of C18 : 0, C12 : 0, C14 : 0 3-OH, C18 : 0 3-OH, C16 : 0, C16 : 1ω6c/C16 : 1ω7c, C17 : 0 3-OH and C20 : 1ω7c were also present. Polar lipids included diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylmethylethanolamine, phosphatidylcholine and two unidentified glycolipids. Bacteriohopane derivatives (BHD1 and 2), diplopterol, diploptene, bishomohopanediol, adenosylhopane and 2β-methyl bacteriohopanetetrol were the major hopanoids of strain MSSRFBL1T. The genomic DNA G+C content was 71 mol%. EzTaxon-e-based blast analysis of the 16S rRNA gene indicated the highest similarity of strain MSSRFBL1T to Ensifer adhaerens LMG 20216T (97.3 %) and other members of the genus Ensifer (<96.9 %) in the family Rhizobiaceae of the class Alphaproteobacteria . However, phylogenetic analysis based on 16S rRNA, recA, thrC and dnaK gene sequences showed distinct out-grouping from the recognized genera of the family Rhizobiaceae . Based on phenotypic, genotypic and chemotaxonomic characters, strain MSSRFBL1T represents a novel species in a new genus in the family Rhizobiaceae for which the name Ciceribacter lividus gen. nov., sp. nov. is proposed. The type strain of Ciceribacter lividus is MSSRFBL1T ( = DSM 25528T = KCTC 32403T).


2012 ◽  
Vol 62 (Pt_3) ◽  
pp. 545-549 ◽  
Author(s):  
Zhe Qu ◽  
Zhao Li ◽  
Xiuming Zhang ◽  
Xiao-Hua Zhang

A novel Gram-stain-positive, white-pigmented, non-motile, non-sporulating, catalase- and oxidase-positive, strictly aerobic coccus, designated strain ZXM223T, was isolated from a seawater sample collected from the coast of Qingdao, PR China, during a green algal bloom. It grew at pH 6.0–10.5 and 0–25.0 % (w/v) NaCl, with optimum growth at pH 8.5 and 3.0 % (w/v) NaCl. Growth occurred at 16–42 °C (optimum at 28 °C). The major fatty acids were anteiso-C15 : 0 and iso-C15 : 0. Menaquinone 6 (MK-6) was the major respiratory quinone. The polar lipids were phosphatidylglycerol, three unidentified phospholipids and two unknown glycolipids. The peptidoglycan type was l-Lys–Gly5–6. The genomic DNA G+C content was 43.5 mol%. Phylogenetic analysis of the 16S rRNA gene sequence placed strain ZXM223T within the genus Salinicoccus, with sequence similarity of 92.2–97.1 % between ZXM223T and the type strains of this genus. The closest relatives were Salinicoccus kunmingensis YIM Y15T, ‘S. salitudinis’ YIM-C678 and S. alkaliphilus T8T. The DNA–DNA relatedness between strain ZXM223T and S. kunmingensis CGMCC 1.6302T and ‘S. salitudinis’ CGMCC 1.6299 ( = YIM-C678) was 37±3 and 30±2 %, respectively. The phenotypic, chemotaxonomic and phylogenetic characteristics and low DNA–DNA relatedness support the proposal of a novel species of the genus Salinicoccus, Salinicoccus qingdaonensis sp. nov., with the type strain ZXM223T ( = LMG 24855T  = CGMCC 1.8895T).


2011 ◽  
Vol 61 (9) ◽  
pp. 2298-2303 ◽  
Author(s):  
Yoshimichi Sugawara ◽  
Atsuko Ueki ◽  
Kunihiro Abe ◽  
Nobuo Kaku ◽  
Kazuya Watanabe ◽  
...  

Two facultatively anaerobic bacterial strains, designated WR061T and WR054, were isolated from rice-straw residue in a methanogenic reactor treating waste from cattle farms in Japan. The two strains were phylogenetically positioned close to one another and had almost the same phenotypic properties. Cells were Gram-reaction-positive, non-motile, non-spore-forming, irregular rods. Cobalamin (vitamin B12) was required for growth. The strains utilized various carbohydrates, including hexoses and disaccharides, and produced acetate and propionate from these carbohydrates. Pentoses and polysaccharides were not utilized. They grew at 20–37 °C (optimum 35 °C) and pH 5.3–8.0 (optimum pH 6.8–7.5). Catalase and nitrate-reducing activities were detected. Aesculin was hydrolysed. The major cellular fatty acids were anteiso-C15 : 0 and C15 : 0 DMA, the major respiratory quinone was menaquinone MK-9(H4) and the genomic DNA G+C content was 69.3–69.5 mol%. The diagnostic diamino acid in the peptidoglycan was meso-diaminopimelic acid. Phylogenetic analysis based on 16S rRNA gene sequences placed the strains in the phylum Actinobacteria. Both strains were remotely related to the species in the family Propionibacteriaceae and Propionibacterium propionicum JCM 5830T was the most closely related type strain with a sequence similarity of 91.6 %. Based on phylogenetic, physiological and chemotaxonomic analyses, the two novel strains together represent a novel species of a new genus, for which the name Propioniciclava tarda gen. nov., sp. nov. is proposed. The type strain is WR061T ( = JCM 15804T  = DSM 22130T).


Sign in / Sign up

Export Citation Format

Share Document