scholarly journals Herbidospora sakaeratensis sp. nov., isolated from soil, and reclassification of Streptosporangium claviforme as a later synonym of Herbidospora cretacea

2011 ◽  
Vol 61 (4) ◽  
pp. 777-780 ◽  
Author(s):  
Antika Boondaeng ◽  
Chanwit Suriyachadkun ◽  
Yuumi Ishida ◽  
Tomohiko Tamura ◽  
Shinji Tokuyama ◽  
...  

An actinomycete strain, DMKUA 205T, was isolated from a soil sample collected from the Sakaerat Biosphere Reserve in Nakhonratchasima Province, Thailand. The novel strain produced short chains of non-motile spores on the tips of long sporophores branching from the vegetative hyphae. The morphological and chemotaxonomic properties of this new isolate corresponded to those of members of the genus Herbidospora. Furthermore, 16S rRNA gene sequence analysis showed that the strain was closely related to members of the genus Herbidospora. Phenotypic properties and DNA–DNA relatedness values differentiated the new strain from its closest phylogenetic relatives Herbidospora yilanensis 0351M-12T (35–54 % DNA–DNA relatedness) and Herbidospora daliensis 0385M-1T (58–65 % relatedness). On the basis of phenotypic, genotypic and phylogenetic data, strain DMKUA 205T could be clearly distinguished from the type strains of H. yilanensis and H. daliensis. Therefore, strain DMKUA 205T represents a novel species, for which the name Herbidospora sakaeratensis sp. nov. is proposed. The type strain is strain DMKUA 205T ( = BCC 11662T = NBRC 102641T). In addition, the DNA–DNA hybridization results from this study revealed that Streptosporangium claviforme is a later synonym of Herbidospora cretacea.

2006 ◽  
Vol 56 (11) ◽  
pp. 2597-2601 ◽  
Author(s):  
Fo-Ting Shen ◽  
Michael Goodfellow ◽  
Amanda L. Jones ◽  
Ye-Pei Chen ◽  
A. B. Arun ◽  
...  

A soil isolate, strain CC-AB07T, was characterized using a polyphasic approach. This organism had chemotaxonomic and morphological properties consistent with its classification in the genus Gordonia. 16S rRNA gene sequence analysis showed that the novel strain formed a monophyletic branch at the periphery of the evolutionary radiation occupied by the genus Gordonia, its closest neighbours being the type strains of Gordonia alkanivorans, Gordonia amicalis, Gordonia bronchialis, Gordonia desulfuricans, Gordonia polyisoprenivorans and Gordonia rhizosphera. The novel isolate was distinguished from all of these type strains using a range of phenotypic properties and by gyrB gene sequence analysis. It was evident from the genotypic and phenotypic data that strain CC-AB07T should be classified as representing a novel species in the genus Gordonia, for which the name Gordonia soli sp. nov. is proposed. The type strain is CC-AB07T (=BCRC 16810T=DSM 44995T).


2004 ◽  
Vol 54 (2) ◽  
pp. 513-517 ◽  
Author(s):  
Raúl Rivas ◽  
Martha E. Trujillo ◽  
Manuel Sánchez ◽  
Pedro F. Mateos ◽  
Eustoquio Martínez-Molina ◽  
...  

A xylanolytic and phosphate-solubilizing bacterium isolated from sawdust of Ulmus nigra in Salamanca was characterized by a polyphasic approach. The novel strain, designated XIL02T, was Gram-positive, aerobic, catalase- and oxidase-negative, rod-shaped and non-motile. Phylogenetically and chemotaxonomically, it was related to members of the genus Microbacterium. According to 16S rRNA gene sequence analysis, it is closely related to Microbacterium arborescens and Microbacterium imperiale; however, DNA–DNA hybridization showed reassociation values less than 70 % with the type strains of these species. In chemotaxonomic analyses, the major menaquinones detected were MK-12, MK-13 and MK-11 and the major fatty acids were anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0; the peptidoglycan was of the type B2β. The G+C content determined was 69 mol%. Based on the present data, it is proposed that strain XIL02T (=LMG 20991T=CECT 5976T) be classified as the type strain of a novel Microbacterium species, for which the name Microbacterium ulmi sp. nov. is proposed.


2007 ◽  
Vol 57 (7) ◽  
pp. 1635-1639 ◽  
Author(s):  
Wei Sun ◽  
Ying Huang ◽  
Yue-Qin Zhang ◽  
Zhi-Heng Liu

An actinomycete, strain 4776T, was isolated from soil collected from Emei Mountain in Sichuan Province, China. The taxonomic status of this strain was established using a polyphasic approach. The organism was found to have morphological and chemotaxonomic characteristics typical of streptomycetes. Phylogenetic analysis based on the almost complete 16S rRNA gene sequence indicated that the novel isolate belongs to the genus Streptomyces and consistently falls into a clade together with Streptomyces prasinopilosus DSM 40098T, Streptomyces prasinus JCM 4603T, Streptomyces bambergiensis DSM 40590T, Streptomyces hirsutus DSM 40095T and Streptomyces cyanoalbus DSM 40198T. However, DNA–DNA relatedness and phenotypic data distinguished strain 4776T from these phylogenetically related type strains. It is therefore concluded that strain 4776T (=CGMCC 4.3504T=DSM 41884T) represents a novel species of the genus Streptomyces, for which the name Streptomyces emeienseis sp. nov. is proposed.


2006 ◽  
Vol 56 (5) ◽  
pp. 1085-1088 ◽  
Author(s):  
Soon Dong Lee

A novel actinomycete, strain N3-7T, was isolated from a natural cave in Jeju, Republic of Korea, using a dilution method and was subjected to characterization using polyphasic taxonomy. A 16S rRNA gene sequence analysis revealed that the organism belonged to the phylogenetic cluster of the genus Actinocorallia and was most closely related to Actinocorallia glomerata and Actinocorallia longicatena (97.6 and 97.5 % similarity, respectively). The main chemotaxonomic properties of strain N3-7T, such as the principal amino acid of the peptidoglycan, the predominant menaquinone and the polar lipid profile, supported classification in the genus Actinocorallia. The organism was readily differentiated from Actinocorallia species with validly published names on the basis of a broad range of phenotypic properties. Thus the isolate represents a novel species of the genus Actinocorallia, for which the name Actinocorallia cavernae sp. nov. is proposed. The type strain is strain N3-7T (=JCM 13278T=NRRL B-24429T).


2015 ◽  
Vol 65 (Pt_9) ◽  
pp. 3131-3136 ◽  
Author(s):  
Hina Singh ◽  
Juan Du ◽  
Kyung-Hwa Won ◽  
Jung-Eun Yang ◽  
Shahina Akter ◽  
...  

A novel bacterial strain, designated THG-PC7T, was isolated from fallow farmland soil in Yongin, South Korea. Cells of strain THG-PC7T were Gram-stain-negative, dark yellow, aerobic, rod-shaped and had gliding motility. Strain THG-PC7T grew optimally at 25–35 °C, at pH 7 and in the absence of NaCl. Comparative 16S rRNA gene sequence analysis identified strain THG-PC7T as belonging to the genus Lysobacter, exhibiting highest sequence similarity with Lysobacter ximonensis KCTC 22336T (98.7 %) followed by Lysobacter niastensis KACC 11588T (95.7 %). In DNA–DNA hybridization tests, DNA relatedness between strain THG-PC7T and its closest phylogenetic neighbour L. ximonensis was below 25 %. The DNA G+C content of the novel isolate was determined to be 62.5 mol%. Flexirubin-type pigments were found to be present. The major cellular fatty acids were determined to be iso-C15 : 0, iso-C16 : 0, anteiso-C15 : 0 and iso-C17 : 1ω9c. The major respiratory quinone was identified as ubiquonone-8 (Q8). The predominant polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and an unidentified aminophospolipid. On the basis of results from DNA–DNA hybridization and the polyphasic data, strain THG-PC7T represents a novel species of the genus Lysobacter, for which the name Lysobacter novalis sp. nov. is proposed. The type strain is THG-PC7T( = KACC 18276T = CCTCC AB 2014319T).


2011 ◽  
Vol 61 (3) ◽  
pp. 482-486 ◽  
Author(s):  
Sung M. Kim ◽  
Sae W. Park ◽  
Sang T. Park ◽  
Young M. Kim

A bacterial strain, PY2T, capable of oxidizing carbon monoxide, was isolated from a soil sample collected from a roadside at Yonsei University, Seoul, Korea. On the basis of 16S rRNA gene sequence analysis, strain PY2T was shown to belong to the genus Terrabacter and was most closely related to Terrabacter lapilli LR-26T (99.1 % similarity). Strain PY2T was characterized chemotaxonomically as having iso-C15 : 0 as the predominant fatty acid, MK-8(H4) as the major menaquinone, ll-diaminopimelic acid as the diagnostic diamino acid of the cell wall, as possessing a polar lipid profile that included diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and unknown amino-containing phosphoglycolipids, and having a DNA G+C content of 75.6 mol%. DNA–DNA relatedness values between strain PY2T and the type strains of T. lapilli, Terrabacter tumescens, Terrabacter terrae and Terrabacter aerolatus were 20.0 %, 22.9 %, 35.9 % and 64.5 %, respectively. Based on the combined evidence from the phylogenetic analyses, chemotaxonomic data and DNA–DNA hybridization experiments, it is proposed that strain PY2T represents a novel species for which the name Terrabacter carboxydivorans sp. nov. is proposed. The type strain is PY2T (=KCCM 42922T=JCM 16259T).


2011 ◽  
Vol 61 (5) ◽  
pp. 1144-1148 ◽  
Author(s):  
M. C. Gutiérrez ◽  
A. M. Castillo ◽  
P. Corral ◽  
M. Kamekura ◽  
A. Ventosa

Two halophilic archaea, strains EN-2T and SH-4, were isolated from the saline lakes Erliannor and Shangmatala, respectively, in Inner Mongolia, China. Cells were strictly aerobic, motile rods. Colonies were red. Strains EN-2T and SH-4 were able to grow at 25–50 °C (optimum 35–40 °C), with 2.5–5.0 M NaCl (optimum 3.4 M NaCl) and at pH 6.0–9.0 (optimum pH 7.5). MgCl2 was not required for growth. Cells lysed in distilled water and the lowest NaCl concentration that prevented cell lysis was 12 % (w/v). On the basis of 16S rRNA gene sequence analysis, strains EN-2T and SH-4 were closely related to Halorubrum cibi B31T (97.9 and 98.0 % similarity, respectively), Hrr. tibetense 8W8T (97.3 and 97.7 %), Hrr. alkaliphilum DZ-1T (96.8 and 97.1 %), Hrr. luteum CGSA15T (96.8 and 97.0 %) and Hrr. lipolyticum 9-3T (96.8 and 97.0 %). DNA–DNA hybridization showed that strains EN-2T and SH-4 did not belong to the same species as any of these strains (≤45 % DNA–DNA relatedness) but that they are members of the same species (>70 % DNA–DNA relatedness). Polar lipid analysis revealed that strains EN-2T and SH-4 contained phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, sulfated diglycosyl diethers and several unidentified glycolipids. The DNA G+C content of both isolates was 62.1 mol%. It was concluded that strains EN-2T and SH-4 represent a novel species of the genus Halorubrum, for which the name Halorubrum aquaticum sp. nov. is proposed. The type strain is EN-2T ( = CECT 7174T  = CGMCC 1.6377T  = JCM 14031T).


2015 ◽  
Vol 65 (Pt_8) ◽  
pp. 2432-2440 ◽  
Author(s):  
Tatyana N. Zhilina ◽  
Daria G. Zavarzina ◽  
Ekaterina N. Detkova ◽  
Ekaterina O. Patutina ◽  
Boris B. Kuznetsov

Two strains of haloalkaliphilic homoacetogenic bacteria capable of iron reduction, Z-7101T and Z-7102, were isolated from soda lake Tanatar III (Altai, Russia). Cells of both strains were flexible, motile, Gram-negative, spore-forming rods. The strains were mesophilic and obligately alkaliphilic: the pH range for growth was 8.5–10.2 (pHopt 9.8). Growth depended on carbonate and chloride ions. The strains were able to grow chemolithoautotrophically on H2+CO2, producing acetate as the only metabolic product. In medium with carbonates as the only potential electron acceptor, the following substrates were utilized for chemo-organotrophic growth: pyruvate, lactate, ethanol, 1-propanol, ethylene glycol and 1-butanol. Strain Z-7101T was able to reduce nitrate, selenate, thiosulfate and anthraquinone 2,6-disulfonate with ethanol as an electron donor. It was also able to reduce synthesized ferrihydrite to siderite with molecular hydrogen or organic compounds, including acetate and formate, as electron donors. It was able to reduce S0 with acetate or formate as electron donors. The DNA G+C content of strain Z-7101T was 34.6 mol%. 16S rRNA gene sequence analysis showed that strains Z-7101T and Z-7102 were members of the order Halanaerobiales and family Halobacteroidaceae, clustering with Fuchsiella alkaliacetigena Z-7100T (98.9–98.4 % similarity). DNA–DNA hybridization was 63.0 % between strain Z-7101T and F. alkaliacetigena Z-7100T. Based on morphological and physiological differences from F. alkaliacetigena Z-7100T and the results of phylogenetic analysis and DNA–DNA hybridization, it is proposed to assign strains Z-7101T and Z-7102 ( = DSM 26052 = VKM B-2790) to the novel species Fuchsiella ferrireducens sp. nov. The type strain is strain Z-7101T ( = DSM 26031T = VKM B-2766T).


2011 ◽  
Vol 61 (1) ◽  
pp. 165-169 ◽  
Author(s):  
Yuchang Liu ◽  
Fanglan Ge ◽  
Guiying Chen ◽  
Wei Li ◽  
Pingmei Ma ◽  
...  

A cholesterol side-chain-cleaving bacterial strain, AD-6T, was isolated from fresh faeces of a clouded leopard (Neofelis nebulosa) and was studied using a polyphasic taxonomic approach. 16S rRNA gene sequence analysis showed that the novel strain formed a distinct subline within the genus Gordonia, its closest neighbours being the type strains of Gordonia cholesterolivorans, Gordonia sihwensis and Gordonia hydrophobica, with sequence similarity values of 98.2, 97.8 and 97.6 %, respectively. The gyrB gene sequence of strain AD-6T exhibited similarities of 77–91 % with those of the type strains of recognized species of the genus Gordonia, being most similar to the type strains of G. sihwensis, G. hydrophobica and Gordonia hirsuta (91, 87 and 84 % similarity, respectively). The results of whole-cell fatty acid analyses and DNA–DNA relatedness data readily distinguished the new isolate from its nearest neighbours. Strain AD-6T is therefore considered to represent a novel species of the genus Gordonia, for which the name Gordonia neofelifaecis sp. nov. is proposed. The type strain is AD-6T (=NRRL B-59395T=CCTCC AB-209144T).


2007 ◽  
Vol 57 (8) ◽  
pp. 1872-1875 ◽  
Author(s):  
Malka Halpern ◽  
Yigal Senderovich ◽  
Sagi Snir

A Gram-negative, rod-shaped bacterial strain, designated K19414T, was isolated from a chironomid (Diptera; Chironomidae) egg mass which was sampled from Kishon River in northern Israel. Phylogenetic analysis based on the 16S rRNA gene sequence positioned the novel strain among the genus Rheinheimera, with closest similarity to Rheinheimera pacifica KMM 1406T. The levels of similarity to type strains of Rheinheimera species were lower than 96.5 %. Isolate K19414T is aerobic, motile by means of a single polar flagellum, catalase-negative and oxidase-positive; growth was observed at salinities of 0–2 % NaCl and the temperature for growth ranged from 4 to 40 °C. The major cellular fatty acids are 16 : 0 (14.8 %) and 16 : 1ω7c and/or 15 : 0 iso 2-OH (25.76 %). The DNA G+C content is 49.9 mol%. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain K19414T (=LMG 23818T =DSM 18694T) was classified in the genus Rheinheimera as the type strain of a novel species, for which the name Rheinheimera chironomi sp. nov. is proposed.


Sign in / Sign up

Export Citation Format

Share Document