scholarly journals Herbaspirillum lusitanum sp. nov., a novel nitrogen-fixing bacterium associated with root nodules of Phaseolus vulgaris

2003 ◽  
Vol 53 (6) ◽  
pp. 1979-1983 ◽  
Author(s):  
A. Valverde
2002 ◽  
Vol 15 (3) ◽  
pp. 225-232 ◽  
Author(s):  
Joaquina Nogales ◽  
Rosario Campos ◽  
Hanaa BenAbdelkhalek ◽  
José Olivares ◽  
Carmen Lluch ◽  
...  

Characterization of nine transposon-induced mutants of Rhizobium tropici with decreased salt tolerance (DST) allowed the identification of eight gene loci required for adaptation to high external NaCl. Most of the genes also were involved in adaptation to hyperosmotic media and were required to overcome the toxicity of LiCl. According to their possible functions, genes identified could be classified into three groups. The first group included two genes involved in regulation of gene expression, such as ntrY, the sensor element of the bacterial ntrY/ntrX two-component regulatory system involved in regulation of nitrogen metabolism, and greA, which encodes a transcription elongation factor. The second group included genes related to synthesis, assembly, or maturation of proteins, such as alaS coding for alanine-tRNA synthetase, dnaJ, which encodes a molecular chaperone, and a nifS homolog probably encoding a cysteine desulfurase involved in the maturation of Fe-S proteins. Genes related with cellular build-up and maintenance were in the third group, such as a noeJ-homolog, encoding a mannose-1-phosphate guanylyltransferase likely involved in lipopolysaccharide biosynthesis, and kup, specifying an inner-membrane protein involved in potassium uptake. Another gene was identified that had no homology to known genes but that could be conserved in other rhizobia. When inoculated on Phaseolus vulgaris growing under nonsaline conditions, all DST mutants displayed severe symbiotic defects: ntrY and noeJ mutants were impaired in nodulation, and the remaining mutants formed symbiosis with very reduced nitrogenase activity. The results suggest that bacterial ability to adapt to hyper-osmotic and salt stress is important for the bacteroid nitrogen-fixing function inside the legume nodule and provide genetic evidence supporting the suggestion that rhizobia face severe environmental changes after their release into plant cells.


1978 ◽  
Vol 176 (2) ◽  
pp. 351-358 ◽  
Author(s):  
P Lehtovaara

Leghaemoglobin from the root nodules of kidney bean (Phaseolus vulgaris) reacts in alkaline glycine solutions as a glycine oxidase in a reaction that may also be regarded as a coupled oxidation. Leghaemoglobin is reduced to the ferrous form by glycinate, the oxygen complex is formed, and finally the haem is attacked to yield a green reaction product. Glycine is simultaneously oxidized to glyoxylate, and hydrogen peroxide is generated. The initial velocity of the formation of the green product is proportional to the concentrations of leghaemoglobin and glycine, and the optimum pH for the reaction is 10.2. The green product is not formed if carbon monoxide, azide of imidazole is bound to the haem, whereas oxidation of glycine to glyoxylate is not inhibited by azide and not essentially by carbon monoxide. Haem breakdown is activated by digestion of leghaemoglobin by carboxypeptidase, and partly inhibited by catalase and superoxide dismutase.


Author(s):  
T. Bisseling ◽  
R.C. Van Den Bos ◽  
M.W. Weststrate ◽  
M.J.J. Hakkaart ◽  
A. Van Kammen

2010 ◽  
Vol 76 (13) ◽  
pp. 4587-4591 ◽  
Author(s):  
C. Talbi ◽  
M. J. Delgado ◽  
L. Girard ◽  
A. Ramírez-Trujillo ◽  
J. Caballero-Mellado ◽  
...  

ABSTRACT Phylogenetic analysis of 16S rRNA, nodC, and nifH genes of four bacterial strains isolated from root nodules of Phaseolus vulgaris grown in Morocco soils were identified as Burkholderia phymatum. All four strains formed N2-fixing nodules on P. vulgaris and Mimosa, Acacia, and Prosopis species and reduced acetylene to ethylene when cultured ex planta.


Sign in / Sign up

Export Citation Format

Share Document