scholarly journals Development of the nitrogen-fixing and protein-synthesizing apparatus of bacteroids in pea root nodules

Author(s):  
T. Bisseling ◽  
R.C. Van Den Bos ◽  
M.W. Weststrate ◽  
M.J.J. Hakkaart ◽  
A. Van Kammen
2011 ◽  
Vol 76 (4) ◽  
pp. 287-298 ◽  
Author(s):  
Wojciech Borucki

Morphometric procedures were used to examine peroxisome number and di-stribution in pea (<em>Pisum sativum</em> L.) root nodules under NaCl (50 mM) or HgCl<sub>2</sub> (7.3 µM) treatment. Peroxisomes were visualized cytochemically in meristem, invasion zone and prefixing zone of pea root nodules by catalase (EC 1.11.1.6) activity. The observations using light and electron microscopy revealed that the peroxisomes were predominantly spherical in shape and showed catalase activity. In nitrogen fixation zone, catalase active peroxisomes were observed occasionally. Bacteroids of nitrogen fixing zone showed enhanced cata-lase activity probably as a response to higher level of oxidative stress. Fluorescence microscopy investigations revealed enhanced level of (homo)glutathione in prefixing and nitrogen-fixing zone of NaCl- and Hg<sup>2+</sup>treated nodules, which served as an indicator of antioxidative response. Morphometric measurements revealed that during differentiation of meristematic cells into central tissue (bacteroidal tissue) cells an increase in peroxisome number was observed in unstressed nodules. Peroxisomes located in meristem, invasion zone and prefixing zone of NaCl- and Hg<sup>2+</sup>-treated nodules outnumbered that in control nodules. A substantial enlargement of peroxisome profiles was detected in NaCl- and Hg<sup>2+</sup>treated nodules. Peroxisome divisions observed in meristematic and infection thread penetration zone were responsible for an increase in peroxisome number.


1996 ◽  
Vol 42 (2) ◽  
pp. 341-346 ◽  
Author(s):  
Luis E. Hernández ◽  
David T. Cooke

2021 ◽  
Vol 22 (23) ◽  
pp. 12991
Author(s):  
Katarzyna Susniak ◽  
Mikolaj Krysa ◽  
Dominika Kidaj ◽  
Monika Szymanska-Chargot ◽  
Iwona Komaniecka ◽  
...  

Multimodal spectroscopic imaging methods such as Matrix Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI MSI), Fourier Transform Infrared spectroscopy (FT-IR) and Raman spectroscopy were used to monitor the changes in distribution and to determine semi quantitatively selected metabolites involved in nitrogen fixation in pea root nodules. These approaches were used to evaluate the effectiveness of nitrogen fixation by pea plants treated with biofertilizer preparations containing Nod factors. To assess the effectiveness of biofertilizer, the fresh and dry masses of plants were determined. The biofertilizer was shown to be effective in enhancing the growth of the pea plants. In case of metabolic changes, the biofertilizer caused a change in the apparent distribution of the leghaemoglobin from the edges of the nodule to its centre (the active zone of nodule). Moreover, the enhanced nitrogen fixation and presumably the accelerated maturation form of the nodules were observed with the use of a biofertilizer.


Sign in / Sign up

Export Citation Format

Share Document