scholarly journals Methylocella tundrae sp. nov., a novel methanotrophic bacterium from acidic tundra peatlands

2004 ◽  
Vol 54 (1) ◽  
pp. 151-156 ◽  
Author(s):  
Svetlana N. Dedysh ◽  
Yulia Y. Berestovskaya ◽  
Lina V. Vasylieva ◽  
Svetlana E. Belova ◽  
Valentina N. Khmelenina ◽  
...  

A novel species, Methylocella tundrae, is proposed for three methanotrophic strains (T4T, TCh1 and TY1) isolated from acidic Sphagnum tundra peatlands. These strains are aerobic, Gram-negative, non-motile, dinitrogen-fixing rods that possess a soluble methane monooxygenase and utilize the serine pathway for carbon assimilation. Strains T4T, TCh1 and TY1 are moderately acidophilic organisms capable of growth between pH 4·2 and 7·5 (optimum 5·5–6·0) and between 5 and 30 °C (optimum 15 °C). The major phospholipid fatty acid is 18 : 1ω7c. The DNA G+C content of strain T4T is 63·3 mol%. The three strains possess almost identical 16S rRNA gene sequences and are most closely related to two previously identified species of Methylocella, Methylocella palustris (97 % similarity) and Methylocella silvestris (97·5 % similarity). DNA–DNA hybridization values of strain T4T with Methylocella palustris KT and Methylocella silvestris BL2T were respectively 27 and 36 %. Thus, the tundra strains represent a novel species, for which the name Methylocella tundrae sp. nov. is proposed. Strain T4T (=DSM 15673T=NCIMB 13949T) is the type strain.

2007 ◽  
Vol 57 (5) ◽  
pp. 1113-1116 ◽  
Author(s):  
François N. R. Renaud ◽  
Alain Le Coustumier ◽  
Nathalie Wilhem ◽  
Dominique Aubel ◽  
Philippe Riegel ◽  
...  

A novel strain, C-138T, belonging to the genus Corynebacterium was isolated from a severe thigh liposarcoma infection and its differentiation from Corynebacterium xerosis and Corynebacterium freneyi is described. Analysis of 16S rRNA gene sequences, rpoB sequences and the PCR profile of the 16S–23S spacer regions was not conclusive enough to differentiate strain C-138T from C. xerosis and C. freneyi. However, according to DNA–DNA hybridization data, strain C-138T constitutes a member of a distinct novel species. It can be differentiated from strains of C. xerosis and C. freneyi by colony morphology, the absence of α-glucosidase and some biochemical characteristics such as glucose fermentation at 42 °C and carbon assimilation substrates. The name Corynebacterium hansenii sp. nov. is proposed for this novel species; the type strain is C-138T (=CIP 108444T=CCUG 53252T).


2007 ◽  
Vol 57 (9) ◽  
pp. 1952-1955 ◽  
Author(s):  
Shoichi Hosoya ◽  
Akira Yokota

A Gram-negative, motile, rod-shaped bacterium (WSF2T) was isolated from coastal seawater of the Boso Peninsula in Japan. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain WSF2T represented a separate lineage within the genus Pseudovibrio. The DNA G+C content of strain WSF2T was 51.7 mol%. DNA–DNA hybridization values between strain WSF2T and the type strains of Pseudovibrio species were significantly lower than those accepted as the phylogenetic definition of a species. Furthermore, some biochemical characteristics indicated that strain WSF2T differed from other Pseudovibrio species. Based on these characteristics, it is proposed that the isolate represents a novel species, Pseudovibrio japonicus sp. nov. The type strain is WSF2T (=IAM 15442T=NCIMB 14279T=KCTC 12861T).


2004 ◽  
Vol 54 (2) ◽  
pp. 389-392 ◽  
Author(s):  
Antonio Ventosa ◽  
M. Carmen Gutiérrez ◽  
Masahiro Kamekura ◽  
Irina S. Zvyagintseva ◽  
Aharon Oren

Halorubrum distributum (basonym, Halobacterium distributum) is an extremely halophilic, aerobic archaeon isolated from saline soils, which was described on the basis of phenotypic features of several strains. The designated type strain of the species (1mT=VKM B-1733T=JCM 9100T) was shown recently to differ from the other strains. In this study, Halorubrum distributum isolates have been characterized with regard to phenotypic features, polar lipid content, comparison of 16S rRNA gene sequences and DNA–DNA hybridization. On the basis of these data, a novel species that includes the other isolates is proposed, with the name Halorubrum terrestre sp. nov. The type strain of this novel species is 4pT (=VKM B-1739T=JCM 10247T). The DNA G+C content of this novel species is 64·2–64·9 mol% (64·4 mol% for the type strain).


2007 ◽  
Vol 57 (9) ◽  
pp. 1956-1959 ◽  
Author(s):  
Bing Li ◽  
Keiko Furihata ◽  
Lin-Xian Ding ◽  
Akira Yokota

A polyphasic study was undertaken to establish the taxonomic position of an isolate, strain DS472T, from soil in Kyoto, Japan. Phylogenetic analysis, based on the 16S rRNA gene sequences, revealed that this strain constitutes a new subline within the genus Rhodococcus, with Rhodococcus yunnanensis YIM 70056T and Rhodococcus fascians DSM 20669T as its nearest phylogenetic neighbours (98.2 and 97.8 % sequence similarity, respectively). DNA–DNA hybridization experiments revealed 36 and 29 % relatedness between the isolate and its phylogenetic relatives, R. yunnanensis and R. fascians, respectively. Chemotaxonomic characteristics, including the major quinone MK-8(H2), predominant fatty acids C16 : 0, C18 : 1 ω9c and 10-methyl C18 : 0, the presence of cell-wall chemotype IV and mycolic acids, were consistent with the properties of members of the genus Rhodococcus. The DNA G+C content was 64.5 mol%. On the basis of both phenotypic and genotypic evidence, strain DS472T represents a novel species of the genus Rhodococcus, for which the name Rhodococcus kyotonensis sp. nov. is proposed. The type strain is strain DS472T (=IAM 15415T=CCTCC AB206088T).


2005 ◽  
Vol 55 (3) ◽  
pp. 1305-1309 ◽  
Author(s):  
Raúl Rivas ◽  
Carmen Gutiérrez ◽  
Adriana Abril ◽  
Pedro F. Mateos ◽  
Eustoquio Martínez-Molina ◽  
...  

Two sporulating bacterial strains designated CECAP06T and CECAP16 were isolated from the rhizosphere of the legume Cicer arietinum in Argentina. Almost-complete 16S rRNA gene sequences identified the isolates as a Paenibacillus species. It was most closely related to Paenibacillus cineris LMG 18439T (99·6 % sequence similarity), Paenibacillus favisporus LMG 20987T (99·4 % sequence similarity) and Paenibacillus azoreducens DSM 13822T (97·7 % sequence similarity). The cells of this novel species were motile, sporulating, rod-shaped, Gram-positive and strictly aerobic. The predominant fatty acids were anteiso-C15 : 0, C16 : 0 and iso-C16 : 0. The DNA G+C content of strains CECAP06T and CECAP16 was 51·3 and 50·9 mol%, respectively. Growth was observed from many carbohydrates, but gas production was not observed from glucose. Catalase and oxidase activities were present. The isolates produced β-galactosidase and hydrolysed aesculin. Gelatinase, caseinase and urease were not produced. The results of DNA–DNA hybridization showed that the strains from this study constitute a novel species of the genus Paenibacillus, for which the name Paenibacillus rhizosphaerae sp. nov. is proposed. The type strain is CECAP06T (=LMG 21955T=CECT 5831T).


2011 ◽  
Vol 61 (11) ◽  
pp. 2616-2620 ◽  
Author(s):  
Onuma Kaewkla ◽  
Christopher M. M. Franco

A member of the genus Actinopolymorpha, designated PIP 143T, was isolated from the leaves of an Australian native apricot tree (Pittosporum phylliraeoides). The isolate was a Gram-reaction-positive, aerobic actinobacterium, with a well-developed substrate mycelium that fragmented into small rods. Phylogenetic evaluation based on 16S rRNA gene sequences placed the isolate in the family Nocardioidaceae. Strain PIP 143T was most closely related to Actinopolymorpha cephalotaxi I06-2230T (98.7 %) and Actinopolymorpha rutila YIM 45725T (98.1 %). Chemotaxonomic data, including cell-wall components, menaquinones and fatty acids, confirmed the affiliation of strain PIP 143T to the genus Actinopolymorpha. Phylogenetic analysis and physiological and biochemical studies, in combination with DNA–DNA hybridization studies, allowed the differentiation of strain PIP 143T from its closest phylogenetic neighbours with validly published names. Therefore, a novel species is proposed, with the name Actinopolymorpha pittospori sp. nov. The type strain is PIP 143T ( = DSM 45354T  = ACM 5288T  = NRRL B-24810T).


2007 ◽  
Vol 57 (9) ◽  
pp. 2052-2055 ◽  
Author(s):  
Tomohiko Tamura ◽  
Kazunori Hatano ◽  
Ken-ichiro Suzuki

Phylogenetic analysis of ‘Sarraceniospora aurea’ NBRC 14752 and strain NBRC 15120, based on 16S rRNA gene sequences, revealed that these organisms are related to members of the genus Actinocorallia. These organisms contained glutamic acid, alanine and meso-diaminopimelic acid as cell-wall amino acids and the menaquinones MK-9(H4), MK-9(H6) and MK-9(H8). The chemotaxonomic characteristics of the strains were consistent with those of the genus Actinocorallia. However, DNA–DNA hybridization and phenotypic characteristics revealed that the strains differed from the recognized species of the genus Actinocorallia. Therefore, we propose that ‘Sarraceniospora aurea’ NBRC 14752 and strain NBRC 15120 be reclassified in the genus Actinocorallia as a novel species, Actinocorallia aurea sp. nov. (type strain NBRC 14752T=DSM 44434T).


2013 ◽  
Vol 63 (Pt_2) ◽  
pp. 484-489 ◽  
Author(s):  
Hangsak Huy ◽  
Long Jin ◽  
Young-Ki Lee ◽  
Keun Chul Lee ◽  
Jung-Sook Lee ◽  
...  

A Gram-negative, non-motile, non-spore-forming and rod-shaped bacterial strain, CH15-1T, was isolated from a sediment sample taken from Daechung Reservoir, South Korea, during the late-blooming period of cyanobacteria. Strain CH15-1T grew optimally at pH 7.0 and 30 °C. A phylogenetic analysis based on 16S rRNA gene sequences confirmed that strain CH15-1T belongs to the genus Arenimonas with the similarity range from 92.6–97.4 % and is closely related to Arenimonas oryziterrae YC6267T (97.4 %), Arenimonas composti TR7-09T (95.4 %), Arenimonas metalli CF5-1T (94.7 %), Arenimonas malthae CC-JY-1T (94.6 %) and Arenimonas donghaensis HO3-R19T (92.6 %). However, the DNA–DNA hybridization between strain CH15-1T and the closest strain, Arenimonas oryziterrae YC6267T, was 8.9–12.9 %. The DNA G+C content was 63.9 mol% compared to A. oryziterrae YC626T, 65.8 mol%. Strain CH15-1T included Q-8 as the major ubiquinone and phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and phosphatidylmonomethylethanolamine as the major polar lipids. The major fatty acids (>5 %) were iso-C15 : 0, iso-C16 : 0, iso-C14 : 0, iso-C11 : 0 3-OH, iso-C17 : 0 and summed feature 9 (iso-C17 : 1ω9c and/or C16 : 0 10-methyl). On the basis of phylogenetic, phenotypic and genetic data, strain CH15-1T was classified in the genus Arenimonas as a member of a novel species, for which the name Arenimonas daechungensis sp. nov. is proposed. The type strain is CH15-1T ( = KCTC 23553T = DSM 24763T).


2007 ◽  
Vol 57 (11) ◽  
pp. 2680-2687 ◽  
Author(s):  
Irina S. Kulichevskaya ◽  
Anastasia O. Ivanova ◽  
Svetlana E. Belova ◽  
Olga I. Baulina ◽  
Paul L. E. Bodelier ◽  
...  

Three strains of budding, ellipsoid-shaped and rosette-forming bacteria were isolated from acidic Sphagnum-dominated boreal wetlands of northern Russia and were designated strains MPL7T, MOB77 and SB2. The presence of crateriform pits and numerous fibrillar appendages on the cell surface and an unusual spur-like projection on one pole of the cell indicated a planctomycete morphotype. These isolates are moderately acidophilic, mesophilic organisms capable of growth at pH values between 4.2 and 7.5 (with an optimum at pH 5.0–6.2) and at temperatures between 4 and 32 °C (optimum 15–26 °C). The major fatty acids are C16 : 0 and C16 : 1 ω7c; the major quinone is MK-6. The G+C content of the DNA is 54.4–56.5 mol%. Strains MPL7T, MOB77 and SB2 possess nearly identical 16S rRNA gene sequences and belong to the planctomycete lineage defined by the genus Planctomyces, being most closely related to Planctomyces limnophilus DSM 3776T (86.9–87.1 % sequence similarity). However, strain MPL7T showed only 28 % DNA–DNA hybridization with P. limnophilus DSM 3776T. Compared with currently described members of the genus Planctomyces, the isolates from northern wetlands do not form long and distinctive stalks, have greater tolerance of acidic conditions and low temperatures, are more sensitive to NaCl, lack pigmentation and degrade a wider range of biopolymers. The data therefore suggest that strains MPL7T, MOB77 and SB2 represent a novel genus and species, for which the name Schlesneria paludicola gen. nov., sp. nov., is proposed. Strain MPL7T (=ATCC BAA-1393T =VKM B-2452T) is the type strain of Schlesneria paludicola.


2015 ◽  
Vol 65 (Pt_11) ◽  
pp. 3824-3829 ◽  
Author(s):  
Arif Nurkanto ◽  
Puspita Lisdiyanti ◽  
Moriyuki Hamada ◽  
Shanti Ratnakomala ◽  
Chiyo Shibata ◽  
...  

Two actinomycete strains, designated LIPI11-2-Ac034T and LIPI11-2-Ac042T, were isolated from leaf litter collected from Cibodas Botanical Garden, West Java, Indonesia. Phylogenetic analysis based on 16S rRNA gene sequences suggested that both isolates belong to the genus Actinoplanes. These isolates were closely related to Actinoplanes ferrugineus and Actinoplanes durhamensis with similarity values of 98.2 % and 97.7 % respectively, for strain LIPI11-2-Ac034T, and 99.0 % and 97.4–97.7 % respectively for strain LIPI11-2-Ac042T. Both isolates grew well on ISP 7 medium with brown soluble pigment production. Spores were motile and sporangia were irregular. The isolates contained meso-diaminopimelic acid in cell-wall hydrolysates, and mannose, glucose and galactose in whole-cell hydrolysates. The predominant menaquinone of strain LIPI11-2-Ac034T was MK-9(H4) while that of strain LIPI11-2-Ac042T was MK-9(H6). The major cellular fatty acids were iso-C16 : 0, iso-C15 : 0 and anteiso-C15 : 0 for strain LIPI11-2-Ac034T, and iso-C16 : 0, anteiso-C15 : 0, iso-C15 : 0 and anteiso-C17 : 0 for strain LIPI11-2-Ac042T. Phosphatidylethanolamine was detected as the diagnostic polar lipid. The DNA G+C contents of strains LIPI11-2-Ac034T and LIPI11-2-Ac042T were 71.5 and 70.7 mol%, respectively. Based on the differential phenotypic characteristics and the results of DNA–DNA hybridization and phylogenetic analysis, it is proposed that strains LIPI11-2-Ac034T and LIPI11-2-Ac042T represent two novel species of the genus Actinoplanes, for which the names Actinoplanes tropicalis sp. nov. (type strain LIPI11-2-Ac034T = InaCC A459T = NBRC 110973T) and Actinoplanes cibodasensis sp. nov. (type strain LIPI11-2-Ac042T = InaCC A458T = NBRC 110974T) are proposed.


Sign in / Sign up

Export Citation Format

Share Document