scholarly journals Actinopolymorpha pittospori sp. nov., an endophyte isolated from surface-sterilized leaves of an apricot tree (Pittosporum phylliraeoides)

2011 ◽  
Vol 61 (11) ◽  
pp. 2616-2620 ◽  
Author(s):  
Onuma Kaewkla ◽  
Christopher M. M. Franco

A member of the genus Actinopolymorpha, designated PIP 143T, was isolated from the leaves of an Australian native apricot tree (Pittosporum phylliraeoides). The isolate was a Gram-reaction-positive, aerobic actinobacterium, with a well-developed substrate mycelium that fragmented into small rods. Phylogenetic evaluation based on 16S rRNA gene sequences placed the isolate in the family Nocardioidaceae. Strain PIP 143T was most closely related to Actinopolymorpha cephalotaxi I06-2230T (98.7 %) and Actinopolymorpha rutila YIM 45725T (98.1 %). Chemotaxonomic data, including cell-wall components, menaquinones and fatty acids, confirmed the affiliation of strain PIP 143T to the genus Actinopolymorpha. Phylogenetic analysis and physiological and biochemical studies, in combination with DNA–DNA hybridization studies, allowed the differentiation of strain PIP 143T from its closest phylogenetic neighbours with validly published names. Therefore, a novel species is proposed, with the name Actinopolymorpha pittospori sp. nov. The type strain is PIP 143T ( = DSM 45354T  = ACM 5288T  = NRRL B-24810T).

2015 ◽  
Vol 65 (Pt_9) ◽  
pp. 3031-3036 ◽  
Author(s):  
B. Parag ◽  
Ch. Sasikala ◽  
Ch. V. Ramana

Strain JC268T was isolated from pebbles collected from a dam located in Lalitpur, Uttar Pradesh, India. Cells of strain JC268T were coccoid, appeared in pairs/triads/tetrads or short chains and were Gram-stain-positive, non-spore-forming, non-motile and obligately aerobic. Strain JC268T was catalase- and oxidase-positive and utilized citrate for growth. The genomic DNA G+C content of strain JC268T was 65.3 mol%. The cell-wall peptidoglycan contained l-lysine–l-serine–d-aspartic acid as interpeptide bridge with the type A4α. The major menaquinone was MK-8(H4). Major (>10 %) fatty acids were iso-C16 : 0, iso-C16 : 1H and anteiso-C17 : 1ω9c. Diphosphatidylglycerol, phosphoglycolipid, phosphatidylinositol, glycolipid, four unidentified lipids, an amino lipid and phospholipid were the polar lipids of strain JC268T. EzTaxon-e blast search of 16S rRNA gene sequences showed that strain JC268T has highest similarity to Barrientosiimonas humi 39T (98.65 %) and Tamlicoccus marinus MSW-24T (97.8 %) of the family Dermacoccaceae. Genome reassociation (based on DNA–DNA hybridization) of strain JC268T with Barrientosiimonas humi CGMCC 4.6864T ( = 39T) and T. marinus KCTC 19485T ( = MSW-24T) yielded values of 32.5 ± 2 % and 27.3 ± 2 %, respectively. Based on the data from phylogenetic and polyphasic taxonomic analyses, strain JC268T represents a novel species of the genus Barrientosiimonas for which the name Barrientosiimonas endolithica sp. nov., is proposed. The type strain of Barrientosiimonas endolithica is JC268T ( = KCTC 29672T = NBRC 110608T). Our data suggest that T. marinus should be reclassified within the genus Barrientosiimonas. Thus, a reclassification is proposed for T. marinus, the type and only species of the genus Tamlicoccus, as Barrientosiimonas marina comb. nov., which implies the emendation of the description of the genus Barrientosiimonas.


2010 ◽  
Vol 60 (12) ◽  
pp. 2913-2917 ◽  
Author(s):  
Saowapar Khianngam ◽  
Somboon Tanasupawat ◽  
Ancharida Akaracharanya ◽  
Kwang Kyu Kim ◽  
Keun Chul Lee ◽  
...  

Two xylan-degrading bacteria, strains MX15-2T and MX21-2T, were isolated from soils collected in Nan province, Thailand. Cells were Gram-reaction-positive, facultatively anaerobic, spore-forming and rod-shaped. They contained meso-diaminopimelic acid in the cell-wall peptidoglycan. The major menaquinone was MK-7. iso-C16 : 0 and anteiso-C15 : 0 were the predominant cellular fatty acids. Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and lysyl-phosphatidylglycerol were the major polar lipids. The genomic DNA G+C contents of strains MX15-2T and MX21-2T were 63.0 and 65.1 mol%, respectively. Phylogenetic analysis using 16S rRNA gene sequences showed that strains MX15-2T and MX21-2T were affiliated with the genus Cohnella and were closely related to Cohnella thermotolerans CCUG 47242T, with 96.5 and 95.6 % sequence similarity, respectively. The strains could be clearly distinguished from each other and from all known species of the genus Cohnella based on their physiological and biochemical characteristics as well as their phylogenetic positions and levels of DNA–DNA hybridization. Therefore, these two strains represent novel species of the genus Cohnella, for which the names Cohnella xylanilytica sp. nov. (type strain MX15-2T =KCTC 22294T =PCU 309T =TISTR 1891T) and Cohnella terrae sp. nov. (type strain MX21-2T =KCTC 22295T =PCU 310T =TISTR 1892T) are proposed.


2007 ◽  
Vol 57 (5) ◽  
pp. 1113-1116 ◽  
Author(s):  
François N. R. Renaud ◽  
Alain Le Coustumier ◽  
Nathalie Wilhem ◽  
Dominique Aubel ◽  
Philippe Riegel ◽  
...  

A novel strain, C-138T, belonging to the genus Corynebacterium was isolated from a severe thigh liposarcoma infection and its differentiation from Corynebacterium xerosis and Corynebacterium freneyi is described. Analysis of 16S rRNA gene sequences, rpoB sequences and the PCR profile of the 16S–23S spacer regions was not conclusive enough to differentiate strain C-138T from C. xerosis and C. freneyi. However, according to DNA–DNA hybridization data, strain C-138T constitutes a member of a distinct novel species. It can be differentiated from strains of C. xerosis and C. freneyi by colony morphology, the absence of α-glucosidase and some biochemical characteristics such as glucose fermentation at 42 °C and carbon assimilation substrates. The name Corynebacterium hansenii sp. nov. is proposed for this novel species; the type strain is C-138T (=CIP 108444T=CCUG 53252T).


2015 ◽  
Vol 65 (Pt_12) ◽  
pp. 4358-4362 ◽  
Author(s):  
Yochan Joung ◽  
Mi-ae Seo ◽  
Heeyoung Kang ◽  
Haneul Kim ◽  
Tae-seok Ahn ◽  
...  

A Gram-staining-negative, non-gliding, orange-pigmented bacterial strain, designated HMF2925T, was isolated from fresh water in Korea. The phylogenetic tree based on 16S rRNA gene sequences showed that strain HMF2925T formed a distinct lineage within the genus Emticicia. Strain HMF2925T was closely related to Emticicia oligotrophica DSM 17448T (95.5 %) and Emticicia ginsengisoli Gsoil 085T (94.1 %). The major fatty acids of strain HMF2925T were summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c), iso-C15 : 0, C16 : 1ω5c and C16 : 0.The major polar lipids of strain HMF2925T were phosphatidylethanolamine, phosphatidylinositol, diphosphatidylglycerol, phosphatidylglycerol, an unidentified glycolipid, two unidentified amino lipids and three unidentified polar lipids. The DNA G+C content of strain HMF2925T was 36.5 mol%. On the basis of the evidence presented in this study, strain HMF2925T represents a novel species of the genus Emticicia, for which the name Emticicia aquatica sp. nov. is proposed. The type strain is HMF2925T ( = KCTC 42574T = CECT 8858T).


2011 ◽  
Vol 61 (5) ◽  
pp. 1201-1205 ◽  
Author(s):  
Jun Dai ◽  
Fan Jiang ◽  
Yang Wang ◽  
Bo Yu ◽  
Huan Qi ◽  
...  

Strain 15-4T, a Gram-stain-negative, rod-shaped, non-motile bacterial strain that produced flexirubin-type pigments, was isolated from Tibet Province, China, and characterized by using a polyphasic taxonomic approach. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolate belonged to the family Chitinophagaceae, phylum ‘Bacteroidetes’, and was related to members of the genus Niabella, with sequence similarities ranging from 94.1 to 96.4 %. Strain 15-4T contained MK-7 as the predominant menaquinone and its DNA G+C content was 46.9 mol%. The major fatty acids of strain 15-4T were iso-C15 : 0 (41.3 %), iso-C15 : 1 G (14.9 %), iso-C17 : 0 3-OH (13.2 %) and summed feature 3 (comprising C16 : 1ω7c and/or iso-C15 : 0 2-OH, 16.0 %). These chemotaxonomic data supported the affiliation of strain 15-4T to the genus Niabella. However, a number of physiological and biochemical features enabled the isolate to be differentiated phenotypically from recognized species of the genus Niabella. On the basis of the evidence presented, it is proposed that strain 15-4T represents a novel species, Niabella tibetensis sp. nov.; the type strain is 15-4T ( = CCTCC AB 209167T = NRRL B-59394T). On the basis of these data, an emended description of the genus Niabella is also proposed.


Author(s):  
Byung-Chun Kim ◽  
Doo-Sang Park ◽  
Hyangmi Kim ◽  
Hyun-Woo Oh ◽  
Kang Hyun Lee ◽  
...  

A novel Gram-positive, non-motile, rod-shaped bacterium, designated strain RB-62T, was isolated during a study of culturable bacteria from the gut of Moechotypa diphysis (Pascoe) and its taxonomic position was investigated. Strain RB-62T grew at 15–30 °C and pH 5.0–8.5. The isoprenoid quinones were menaquinones MK-11 (77.1 %), MK-10 (11.7 %) and MK-12 (11.2 %). The major cellular fatty acids were anteiso-C15 : 0 (34.6 %), anteiso-C17 : 0 (29.8 %), iso-C16 : 0 (17.0 %) and cyclohexyl-C17 : 0 (11.4 %). The diagnostic diamino acid of the cell-wall peptidoglycan was 2,4-diaminobutyric acid. The G+C content of the genomic DNA of strain RB-62T was 70.3 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain RB-62T was affiliated with the genus Herbiconiux cluster within the family Microbacteriaceae, and was related most closely to Herbiconiux ginsengi wged11T (98.08 % similarity). The level of DNA–DNA relatedness between strain RB-62T and H. ginsengi wged11T was 43.2 % (reciprocal 66.7 %). Phenotypic and phylogenetic characteristics clearly distinguished strain RB-62T from recognized species of the genus Herbiconiux. Based on data from the present polyphasic study, strain RB-62T is considered to represent a novel species of the genus Herbiconiux, for which the name Herbiconiux moechotypicola sp. nov. is proposed. The type strain is RB-62T ( = KCTC 19653T = JCM 16117T).


2007 ◽  
Vol 57 (9) ◽  
pp. 1952-1955 ◽  
Author(s):  
Shoichi Hosoya ◽  
Akira Yokota

A Gram-negative, motile, rod-shaped bacterium (WSF2T) was isolated from coastal seawater of the Boso Peninsula in Japan. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain WSF2T represented a separate lineage within the genus Pseudovibrio. The DNA G+C content of strain WSF2T was 51.7 mol%. DNA–DNA hybridization values between strain WSF2T and the type strains of Pseudovibrio species were significantly lower than those accepted as the phylogenetic definition of a species. Furthermore, some biochemical characteristics indicated that strain WSF2T differed from other Pseudovibrio species. Based on these characteristics, it is proposed that the isolate represents a novel species, Pseudovibrio japonicus sp. nov. The type strain is WSF2T (=IAM 15442T=NCIMB 14279T=KCTC 12861T).


2011 ◽  
Vol 61 (4) ◽  
pp. 709-715 ◽  
Author(s):  
Seong Chan Park ◽  
Keun Sik Baik ◽  
Han Na Choe ◽  
Chae Hong Lim ◽  
Ho Jun Kim ◽  
...  

Two non-motile, orange- or yellow-pigmented bacteria, designated strains KYW48T and KYW147T, were isolated from seawater collected from the South Sea, Republic of Korea. Cells of both strains were Gram-reaction-negative, aerobic and catalase- and oxidase-positive. The major fatty acids of strain KYW48T were C18 : 1ω7c (35.3 %), summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c) (22.7 %), C17 : 1ω6c (19.8 %), C14 : 0 2-OH (7.4 %) and C16 : 0 (5.9 %), and those of strain KYW147T were C18 : 1ω7c (36.0 %), summed feature 3 (18.3 %), C16 : 0 (14.7 %), 11-methyl C18 : 1ω7c (10.7 %), C16 : 0 2-OH (9.1 %) and C18 : 1ω9c (8.0 %). The predominant isoprenoid quinone of both strains was ubiquinone 10 (Q-10). The DNA G+C contents of strains KYW48T and KYW147T were 63.8 and 67.2 mol%, respectively. A phylogenetic tree based on 16S rRNA gene sequences showed that strains KYW48T and KYW147T were grouped with the members of the family Erythrobacteraceae and formed a distinct clade with the members of the genus Altererythrobacter (<95.7 % sequence similarity). On the basis of the evidence presented in this study, the novel species Altererythrobacter namhicola sp. nov. (type strain KYW48T  = KCTC 22736T  = JCM 16345T) and Altererythrobacter aestuarii sp. nov. (type strain KYW147T  = KCTC 22735T  = JCM 16339T) are proposed.


2010 ◽  
Vol 60 (3) ◽  
pp. 580-584 ◽  
Author(s):  
Muhammad Yasir ◽  
Zubair Aslam ◽  
Geun Cheol Song ◽  
Che Ok Jeon ◽  
Young Ryun Chung

A Gram-stain-negative, rod-shaped bacterium, designated strain YC7378T was isolated from vermicompost (VC) collected at Masan, Korea, and its taxonomic position was investigated by using a polyphasic approach. Strain YC7378T grew optimally at 30 °C and at pH 6.5–8.5. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain YC7378T belongs to the genus Sphingosinicella in the family Sphingomonadaceae. The most closely related strains are Sphingosinicella soli KSL-125T (95.7 %), Sphingosinicella xenopeptidilytica 3-2W4T (95.6 %) and Sphingosinicella microcystinivorans Y2T (95.5 %). Strain YC7378T contained ubiquinone Q-10 as the major respiratory quinone system and sym-homospermidine as the major polyamine. The major fatty acids of strain YC7378T were C18 : 1 ω7c, C16 : 1 ω7c and/or iso-C15 : 0 2-OH, C14 : 0 2-OH and C16 : 0. The major polar lipids were sphingoglycolipid, diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The total DNA G+C content was 59.4 mol%. The phenotypic, phylogenetic and chemotaxonomic data showed that strain YC7378T represents a novel species of the genus Sphingosinicella, for which the name Sphingosinicella vermicomposti sp. nov. is proposed. The type strain is YC7378T (=KCTC 22446T =DSM 21593T).


2004 ◽  
Vol 54 (2) ◽  
pp. 389-392 ◽  
Author(s):  
Antonio Ventosa ◽  
M. Carmen Gutiérrez ◽  
Masahiro Kamekura ◽  
Irina S. Zvyagintseva ◽  
Aharon Oren

Halorubrum distributum (basonym, Halobacterium distributum) is an extremely halophilic, aerobic archaeon isolated from saline soils, which was described on the basis of phenotypic features of several strains. The designated type strain of the species (1mT=VKM B-1733T=JCM 9100T) was shown recently to differ from the other strains. In this study, Halorubrum distributum isolates have been characterized with regard to phenotypic features, polar lipid content, comparison of 16S rRNA gene sequences and DNA–DNA hybridization. On the basis of these data, a novel species that includes the other isolates is proposed, with the name Halorubrum terrestre sp. nov. The type strain of this novel species is 4pT (=VKM B-1739T=JCM 10247T). The DNA G+C content of this novel species is 64·2–64·9 mol% (64·4 mol% for the type strain).


Sign in / Sign up

Export Citation Format

Share Document