scholarly journals Sphingobacterium yanglingense sp. nov., isolated from the nodule surface of soybean

2014 ◽  
Vol 64 (Pt_11) ◽  
pp. 3862-3866 ◽  
Author(s):  
Shi Peng ◽  
Dong Dan Hong ◽  
Yang Bing Xin ◽  
Li Ming Jun ◽  
Wei Ge Hong

A Gram-staining-negative, non-motile, catalase- and oxidase-positive strain, designated CCNWSP36-1T, was isolated from the nodule surface of soybean [Glycine max (L.) Merrill] cultivar Zhonghuang 13. The 16S rRNA gene sequence analysis clearly showed that the isolate represented a member of the genus Sphingobacterium . On the basis of pairwise comparisons of 16S rRNA gene sequences, strain CCNWSP36-1T showed 96.8 % similarity to Sphingobacterium nematocida CCTCC AB 2010390T and less than 95.2 % similarity to other members of the genus Sphingobacterium . Growth of strain CCNWSP36-1T occurred at 10–40 °C and at pH 5.0–9.0. The NaCl range (w/v) for growth was 0–4 %. The predominant isoprenoid quinone was MK-7. The polar lipids were phosphatidylethanolamine and several unidentified polar lipids. Sphingolipid was present. The major fatty acids were iso-C15 : 0 and summed feature 3 (comprising C16 : 1ω6c and/or C16 : 1ω7c). The G+C content of the genomic DNA was 41.1 mol%. As the physiological and biochemical characteristics of strain CCNWSP36-1T and the type strains of its closest phylogenetic neighbours showed clear differences, a novel species, Sphingobacterium yanglingense, is proposed. The type strain is CCNWSP36-1T ( = ACCC 19328T = JCM 30166T).

2014 ◽  
Vol 64 (Pt_2) ◽  
pp. 625-630 ◽  
Author(s):  
Naysim Lo ◽  
Hyun Mi Jin ◽  
Che Ok Jeon

A Gram-staining-negative, motile, weakly halophilic and facultatively aerobic bacterium, designated strain YA11T, was isolated from tidal flat sediment at Yeongam Bay, South Korea. Strain YA11T grew at 10–30 °C (optimum, 20 °C), at pH 6.0–10.0 (optimum, pH 6.5–7.5) and in the presence of 1–6 % (w/v) NaCl (optimum, 2–3 %). The major cellular fatty acids of the strain were summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) and C16 : 0. The DNA G+C content of the genomic DNA was 44.2 mol%. Strain YA11T contained Q-8 as the sole respiratory quinone. A phylogenetic tree based on 16S rRNA gene sequences showed that strain YA11T formed a distinct phyletic lineage within the genus Photobacterium and the 16S rRNA gene sequence similarities between strain YA11T and the type strains of species of the genus Photobacterium ranged between 94.0 and 96.4 %. Based on the phenotypic, chemotaxonomic and molecular properties, strain YA11T represents a novel species of the genus Photobacterium , for which the name Photobacterium aestuarii sp. nov. is proposed, with strain YA11T( = KACC 16912T = JCM 18592T) as the type strain.


2013 ◽  
Vol 63 (Pt_3) ◽  
pp. 1056-1061 ◽  
Author(s):  
Ifeoma Ezeoke ◽  
Hans-Peter Klenk ◽  
Gabriele Pötter ◽  
Peter Schumann ◽  
Ben D. Moser ◽  
...  

Five nocardioform isolates from human clinical sources were evaluated. Analysis of the nearly full-length 16S rRNA gene showed 99.9–100 % similarity among the strains. The results of a comparative phylogenetic analysis of the 16S rRNA gene sequences indicated that the isolates belonged to the genus Nocardia . Phenotypic and molecular analyses were performed on the clinical isolates. Traditional phenotypic analyses included morphological, biochemical/physiological, chemotaxonomic and antimicrobial susceptibility profiling. Molecular studies included 1441-bp 16S rRNA and 1246-bp gyrB gene sequence analyses, as well as DNA–DNA hybridizations. Biochemical analysis failed to differentiate the putative novel species from its phylogenetic neighbours; however, molecular studies were able to distinguish the patient strains and confirm them as members of a single species. Based on 16S rRNA gene sequence analysis, similarity between the isolates and their closest relatives (type strains of Nocardia araoensis , N. arthritidis , N. beijingensis and N. niwae ) was ≤99.3 %. Analysis of partial gyrB gene sequences showed 98–99.7 % relatedness among the isolates. Nocardia lijiangensis and N. xishanensis were the closest related species to the isolates based on gyrB gene sequence analysis, and their type strains showed 95.7 and 95.3 % similarity, respectively, to strain W9988T. Resistance to amikacin and molecular analyses, including DNA–DNA hybridization, distinguished the five patient strains from their phylogenetic neighbours, and the results of this polyphasic study indicated the existence of a novel species of Nocardia , for which we propose the name Nocardia amikacinitolerans sp. nov., with strain W9988T ( = DSM 45539T  = CCUG 59655T) as the type strain.


2013 ◽  
Vol 63 (Pt_8) ◽  
pp. 3075-3078 ◽  
Author(s):  
Shigeto Otsuka ◽  
Taku Suenaga ◽  
Hoan Thi Vu ◽  
Hiroyuki Ueda ◽  
Akira Yokota ◽  
...  

The taxonomic properties of strain DC2c-G4T, a Gram-staining-negative, ovoid, gellan-gum-degrading bacterial isolate, were examined. Phylogenetic analysis based on 16S rRNA gene sequences identified this isolate as a member of the phylum Verrucomicrobia and closest to the genus Prosthecobacter . The 16S rRNA gene sequence similarities between this isolate and any of the type strains of species of the genus Prosthecobacter were less than 95 %. In addition, the absence of a single prostheca and the predominant menaquinone MK-7(H2) supported the differentiation of this isolate from the genus Prosthecobacter . Here, we propose Brevifollis gellanilyticus gen. nov., sp. nov. to accommodate the isolate. The type strain of the type species is DC2c-G4T ( = NBRC 108608T = CIP 110457T).


2020 ◽  
Vol 70 (8) ◽  
pp. 4616-4622 ◽  
Author(s):  
Ye Lin Seo ◽  
Shehzad Abid Khan ◽  
Hyung Min Kim ◽  
Byung Hee Chun ◽  
Dong Min Han ◽  
...  

Two Gram-stain-negative, facultative anaerobic and non-motile bacteria, strains R11T and S1162T, were isolated from soil in the Republic of Korea. Both strains were catalase- and oxidase-positive and contained menaquinone-7 as the major isoprenoid quinone. Strain R11T contained summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), iso-C15:0, C16:0 and iso-C17:0 3-OH as major fatty acids and phosphatidylethanolamine, an unidentified aminophospholipid and an unidentified aminolipid as major polar lipids; while strain S1162T contained summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), iso-C15:0, iso-C17:0 3-OH, C16:0 and summed feature 9 (10-methyl C16:0 and/or iso-C17:1 ω9c) as major fatty acids and phosphatidylethanolamine and an unidentified aminophospholipid as major polar lipids. The DNA G+C contents of strains R11T and S1162T calculated from their whole genomes were 42.7 and 42.9 mol%, respectively. Results of phylogenetic analysis based on 16S rRNA gene sequences showed that strain R11T formed a phylogenetic lineage with Mucilaginibacter jinjuensis YC7004T and strain S1162T formed a distinct phyletic lineage from closely related type strains within the genus Mucilaginibacter . Strains R11T and S1162T were most closely related to M. jinjuensis YC7004T and Mucilaginibacter panaciglaebae BXN5-31T with 97.78 and 97.23% 16S rRNA gene sequence similarities, respectively. On the basis of phenotypic, chemotaxonomic and molecular analysis, strains R11T and S1162T represent two novel species of the genus Mucilaginibacter , for which the names Mucilaginibacter agri sp. nov. and Mucilaginibacter humi sp. nov. are proposed, respectively. The type strains of M. agri and M. humi are R11T (=KACC 21228T=JCM 33472T) and S1162T (=KACC 21669T=JCM 33916T), respectively.


2015 ◽  
Vol 65 (Pt_2) ◽  
pp. 418-423 ◽  
Author(s):  
Shan Gao ◽  
Wen-Bin Zhang ◽  
Xia-Fang Sheng ◽  
Lin-Yan He ◽  
Zhi Huang

A Gram-stain-negative, aerobic, yellow-pigmented, non-motile, non-spore-forming, rod-shaped bacterial strain, Z29T, was isolated from the surface of weathered rock (potassic trachyte) from Nanjing, Jiangsu Province, PR China. Phylogenetic analysis based on 16S rRNA gene sequences suggested that strain Z29T belongs to the genus Chitinophaga in the family Chitinophagaceae . Levels of 16S rRNA gene sequence similarity between strain Z29T and the type strains of recognized species of the genus Chitinophaga ranged from 92.7 to 98.2 %. The main fatty acids of strain Z29T were iso-C15 : 0, C16 : 1ω5c and iso-C17 : 0 3-OH. It also contained menaquinone 7 (MK-7) as the respiratory quinone and homospermidine as the main polyamine. The polar lipid profile contained phosphatidylethanolamine, unknown aminolipids, unknown phospholipids and unknown lipids. The total DNA G+C content of strain Z29T was 51.3 mol%. Phenotypic properties and chemotaxonomic data supported the affiliation of strain Z29T with the genus Chitinophaga . The low level of DNA–DNA relatedness (ranging from 14.6 to 29.8 %) to the type strains of other species of the genus Chitinophaga and differential phenotypic properties demonstrated that strain Z29T represents a novel species of the genus Chitinophaga , for which the name Chitinophaga longshanensis sp. nov. is proposed. The type strain is Z29T ( = CCTCC AB 2014066T = LMG 28237T).


Author(s):  
Sooyeon Park ◽  
Jung-Sook Lee ◽  
Wonyong Kim ◽  
Jung-Hoon Yoon

Two Gram-stain-negative and non-flagellated bacteria, YSTF-M3T and YSTF-M6T, were isolated from a tidal flat from Yellow Sea, Republic of Korea, and subjected to a polyphasic taxonomic study. Neighbour-joining phylogenetic tree of 16S rRNA gene sequences showed that strains YSTF-M3T and YSTF-M6T belong to the genera Kordia and Olleya of the family Flavobacteriaceae , respectively. The 16S rRNA gene sequence similarities between strain YSTF-M3T and the type strains of Kordia species and between strain YSTF-M6T and the type strains of Olleya species were 94.1–98.4 and 97.3–98.3 %, respectively. The ANI and dDDH values between genomic sequences of strain YSTF-M3T and the type strains of five Kordia species and between those of strain YSTF-M6T and the type strains of three Olleya species were in ranges of 77.0–83.2 and 20.7–27.1 % and 79.4–81.5 and 22.3–23.9 %, respectively. The DNA G+C contents of strain YSTF-M3T and YSTF-M6T from genomic sequences were 34.1 and 31.1 %, respectively. Both strains contained MK-6 as predominant menaquinone and phosphatidylethanolamine as only major phospholipid identified. Differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, revealed that strains YSTF-M3T and YSTF-M6T are separated from recognized species of the genera Kordia and Olleya , respectively. On the basis of the data presented, strains YSTF-M3T (=KACC 21639T=NBRC 114499T) and YSTF-M6T (=KACC 21640T=NBRC 114500T) are considered to represent novel species of the genera Kordia and Olleya , respectively, for which the names Kordia aestuariivivens sp. nov. and Olleya sediminilitoris sp. nov. are proposed.


Author(s):  
Qing Liu ◽  
Lei-Lei Yang ◽  
Hong-Can Liu ◽  
Guo-Qing Zhang ◽  
Yu-Hua Xin

A novel Gram-stain-negative, rod-shaped, yellow bacterium, designated as LB1R16T, was isolated from the Laigu glacier on the Tibetan Plateau, PR China. Strain LB1R16T was catalase-positive, oxidase-negative and grew at 0–28 °C, pH 6.0–8.0 and in the absence of NaCl. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain LB1R16T belongs to the family Sphingosinicellaceae but formed an independent lineage. The highest level of 16S rRNA gene sequence similarities were found to Polymorphobacter arshaanensis DJ1R-1T (95.24 %), Sphingoaurantiacus capsulatus YLT33T (94.78 %) and Sandarakinorhabdus limnophila DSM 17366T (94.67 %). The genomic DNA G+C content was 68.8 mol%. The main cellular fatty acids were summed feature 8 (C18 : 1  ω7c/C18 : 1  ω6c), summed feature 3 (C16 : 1  ω7c/C16 : 1  ω6c), C16 : 0 and C12 : 0-OH. The respiratory quinone was ubiquinone-10. The polar lipids were phosphatidylethanolamine, phosphatidylglycerol, one sphingoglycolipid, one unidentified aminolipid, one unidentified phospholipid and two unidentified polar lipids, which were different from the type strains of Polymorphobacter arshaanensis , Sphingoaurantiacus capsulatus and Sandarakinorhabdus limnophila . Based on a polyphasic approach, a novel species of a new genus, Glacieibacterium frigidum gen. nov., sp. nov., within the family Sphingosinicellaceae is proposed. The type strain is LB1R16T (=CGMCC 1.11941T=NBRC 113873T).


Author(s):  
Jun-Jie Ying ◽  
Zhi-Cheng Wu ◽  
Yuan-Chun Fang ◽  
Lin Xu ◽  
Cong Sun

Parvularcula flava was proposed as a novel member of genus Parvularcula in 2016. Some time earlier, Aquisalinus flavus has been proposed as a novel species of a novel genus named Aquisalinus . When comparing the 16S rRNA gene sequences of type strains P. flava NH6-79T and A. flavus D11M-2T, they showed 97.9 % sequence identity, much higher than the sequence identities 92.7–94.3 % between P. flava NH6-79T and type strains in the genus Parvularcula , indicating that the later proposed novel taxon Parvularcula flava need reclassification. The phylogenetic trees based on 16S rRNA gene sequences and genome sequences both showed that P. flava NH6-79T and A. flavus D11M-2T formed a separated branch away from strains in the genera Parvularcula , Marinicaulis and Amphiplicatus . The average amino acid identity and average nucleotide identity values of P. flava NH6-79T and A. flavus D11M-2T were 87.9 and 85.0 %, respectively, much higher than the values between P. flava NH6-79T and other closely related type strains (54.3 %–58.1 % and 68.6–70.4 %, respectively). P. flava NH6-79T and A. flavus D11M-2T also contained summed feature 8 (C18 : 1  ω6c and/or C18 : 1  ω7c) and C16 : 0 as major fatty acids, distinguishing them from other closely related taxa. Based on the results of the phylogenetic, comparative genomic and phenotypic analyses, Parvularcula flava should be reclassified as Aquisalinus luteolus nom. nov. and the description of genus Aquisalinus is emended.


2012 ◽  
Vol 62 (Pt_9) ◽  
pp. 2163-2168 ◽  
Author(s):  
Yong-Taek Jung ◽  
Ji-Hoon Kim ◽  
So-Jung Kang ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A Gram-staining-negative, non-flagellated, non-gliding and pleomorphic bacterial strain, designated DPG-25T, was isolated from seawater in a seaweed farm in the South Sea in Korea and its taxonomic position was investigated by using a polyphasic approach. Strain DPG-25T grew optimally at 25 °C, at pH 7.0–7.5 and in the presence of 2 % (w/v) NaCl. Flexirubin-type pigments were not produced. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain DPG-25T formed a cluster with the type strains of Actibacter sediminis , Aestuariicola saemankumensis and Lutimonas vermicola . Strain DPG-25T exhibited 16S rRNA gene sequence similarity values of 95.3, 93.1 and 93.6 % to the type strains of Actibacter sediminis , Aestuariicola saemankumensis and L. vermicola , respectively. Strain DPG-25T contained MK-6 as the predominant menaquinone and iso-C15 : 0 and iso-C17 : 0 3-OH as the major fatty acids. The major polar lipids detected in strain DPG-25T were phosphatidylethanolamine and one unidentified lipid. The DNA G+C content was 39.9 mol%. Differential phenotypic properties and the phylogenetic distinctiveness of strain DPG-25T demonstrated that this strain is distinguishable from Actibacter sediminis , Aestuariicola saemankumensis and L. vermicola . On the basis of the data presented here, strain DPG-25T represents a novel species in a novel genus of the family Flavobacteriaceae , for which the name Namhaeicola litoreus gen. nov., sp. nov. is proposed. The type strain of Namhaeicola litoreus is DPG-25T ( = KCTC 23702T  = CCUG 61485T).


2012 ◽  
Vol 62 (Pt_6) ◽  
pp. 1348-1353 ◽  
Author(s):  
Hui-xian Wu ◽  
Pok Yui Lai ◽  
On On Lee ◽  
Xiao-jian Zhou ◽  
Li Miao ◽  
...  

A novel Gram-negative, aerobic, catalase- and oxidase-positive, non-sporulating, non-motile, rod-shaped bacterium, designated strain UST081027-248T, was isolated from seawater of the Red Sea. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain UST081027-248T fell within the genus Erythrobacter . Levels of 16S rRNA gene sequence similarity between the novel strain and the type strains of Erythrobacter species ranged from 95.3 % (with Erythrobacter gangjinensis ) to 98.2 % (with Erythrobacter citreus ). However, levels of DNA–DNA relatedness between strain UST081027-248T and the type strains of closely related species were below 70 %. Optimal growth of the isolate occurred in the presence of 2.0 % NaCl, at pH 8.0–9.0 and at 28–36 °C. The isolate did not produce bacteriochlorophyll a. The predominant cellular fatty acids were C17 : 1ω6c, summed feature 8 (C18 : 1ω6c and/or C18 : 1ω7c) and C15 : 0 2-OH. The genomic DNA G+C content of strain UST081027-248T was 60.4 mol%. Phenotypic properties and phylogenetic distinctiveness clearly indicated that strain UST081027-248T represents a novel species of the genus Erythrobacter , for which the name Erythrobacter pelagi sp. nov. is proposed. The type strain is UST081027-248T ( = JCM 17468T = NRRL 59511T).


Sign in / Sign up

Export Citation Format

Share Document