scholarly journals Advenella incenata gen. nov., sp. nov., a novel member of the Alcaligenaceae, isolated from various clinical samples

2005 ◽  
Vol 55 (1) ◽  
pp. 251-256 ◽  
Author(s):  
Tom Coenye ◽  
Elke Vanlaere ◽  
Emly Samyn ◽  
Enevold Falsen ◽  
Peter Larsson ◽  
...  

A polyphasic taxonomic study of 14 isolates recovered from various human and veterinary clinical samples was performed. Phenotypically these isolates shared several characteristics with members of the Alcaligenaceae and related genera. Random amplified polymorphic DNA fingerprinting and whole-cell protein analysis suggested the presence of multiple genomic groups, which was confirmed by DNA–DNA hybridization experiments. 16S rRNA gene sequence analysis indicated that these isolates were related to the genera Pelistega, Taylorella, Oligella, Pigmentiphaga, Alcaligenes, Kerstersia, Achromobacter and Bordetella and belonged to the family Alcaligenaceae. Based on the results of the present study the organisms were classified in a novel genus, Advenella gen. nov. This genus comprises one named species, Advenella incenata sp. nov. (type strain LMG 22250T=CCUG 45225T) and five currently unnamed genomic species. The DNA G+C content of members of the novel genus Advenella is between 54·0 and 57·7 mol%.

2015 ◽  
Vol 65 (Pt_9) ◽  
pp. 3131-3136 ◽  
Author(s):  
Hina Singh ◽  
Juan Du ◽  
Kyung-Hwa Won ◽  
Jung-Eun Yang ◽  
Shahina Akter ◽  
...  

A novel bacterial strain, designated THG-PC7T, was isolated from fallow farmland soil in Yongin, South Korea. Cells of strain THG-PC7T were Gram-stain-negative, dark yellow, aerobic, rod-shaped and had gliding motility. Strain THG-PC7T grew optimally at 25–35 °C, at pH 7 and in the absence of NaCl. Comparative 16S rRNA gene sequence analysis identified strain THG-PC7T as belonging to the genus Lysobacter, exhibiting highest sequence similarity with Lysobacter ximonensis KCTC 22336T (98.7 %) followed by Lysobacter niastensis KACC 11588T (95.7 %). In DNA–DNA hybridization tests, DNA relatedness between strain THG-PC7T and its closest phylogenetic neighbour L. ximonensis was below 25 %. The DNA G+C content of the novel isolate was determined to be 62.5 mol%. Flexirubin-type pigments were found to be present. The major cellular fatty acids were determined to be iso-C15 : 0, iso-C16 : 0, anteiso-C15 : 0 and iso-C17 : 1ω9c. The major respiratory quinone was identified as ubiquonone-8 (Q8). The predominant polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and an unidentified aminophospolipid. On the basis of results from DNA–DNA hybridization and the polyphasic data, strain THG-PC7T represents a novel species of the genus Lysobacter, for which the name Lysobacter novalis sp. nov. is proposed. The type strain is THG-PC7T( = KACC 18276T = CCTCC AB 2014319T).


2015 ◽  
Vol 65 (Pt_8) ◽  
pp. 2432-2440 ◽  
Author(s):  
Tatyana N. Zhilina ◽  
Daria G. Zavarzina ◽  
Ekaterina N. Detkova ◽  
Ekaterina O. Patutina ◽  
Boris B. Kuznetsov

Two strains of haloalkaliphilic homoacetogenic bacteria capable of iron reduction, Z-7101T and Z-7102, were isolated from soda lake Tanatar III (Altai, Russia). Cells of both strains were flexible, motile, Gram-negative, spore-forming rods. The strains were mesophilic and obligately alkaliphilic: the pH range for growth was 8.5–10.2 (pHopt 9.8). Growth depended on carbonate and chloride ions. The strains were able to grow chemolithoautotrophically on H2+CO2, producing acetate as the only metabolic product. In medium with carbonates as the only potential electron acceptor, the following substrates were utilized for chemo-organotrophic growth: pyruvate, lactate, ethanol, 1-propanol, ethylene glycol and 1-butanol. Strain Z-7101T was able to reduce nitrate, selenate, thiosulfate and anthraquinone 2,6-disulfonate with ethanol as an electron donor. It was also able to reduce synthesized ferrihydrite to siderite with molecular hydrogen or organic compounds, including acetate and formate, as electron donors. It was able to reduce S0 with acetate or formate as electron donors. The DNA G+C content of strain Z-7101T was 34.6 mol%. 16S rRNA gene sequence analysis showed that strains Z-7101T and Z-7102 were members of the order Halanaerobiales and family Halobacteroidaceae, clustering with Fuchsiella alkaliacetigena Z-7100T (98.9–98.4 % similarity). DNA–DNA hybridization was 63.0 % between strain Z-7101T and F. alkaliacetigena Z-7100T. Based on morphological and physiological differences from F. alkaliacetigena Z-7100T and the results of phylogenetic analysis and DNA–DNA hybridization, it is proposed to assign strains Z-7101T and Z-7102 ( = DSM 26052 = VKM B-2790) to the novel species Fuchsiella ferrireducens sp. nov. The type strain is strain Z-7101T ( = DSM 26031T = VKM B-2766T).


2012 ◽  
Vol 62 (Pt_3) ◽  
pp. 591-595 ◽  
Author(s):  
Sang-Hee Lee ◽  
Qing-Mei Liu ◽  
Sung-Taik Lee ◽  
Sun-Chang Kim ◽  
Wan-Taek Im

A Gram-reaction-positive, rod-shaped, non-motile, non-spore-forming bacterium (strain BX5-10T) was isolated from the soil of a ginseng field on Baekdu Mountain in Jilin district, China. The taxonomic position of this bacterium was determined in an investigation based on a polyphasic approach. On the basis of 16S rRNA gene sequence analysis, strain BX5-10T was shown to belong to the family Nocardioidaceae and to be most closely related to Nocardioides plantarum NCIMB 12834T (96.5 % sequence similarity), Nocardioides dokdonensis KCTC 19309T (96.2 %) and Nocardioides fonticola NAA-13T (95.1 %). Strain BX5-10T was characterized chemotaxonomically as having ll-2,6-diaminopimelic acid in its cell-wall peptidoglycan, MK-8(H4) as the predominant menaquinone and C18 : 1ω9c, C16 : 0 and C17 : 1ω8c as its major fatty acids. The G+C content of the genomic DNA was 70.3 mol%. The novel strain could be differentiated genotypically and phenotypically from all recognized species of the genus Nocardioides. Based on the results of the phylogenetic analyses and the genotypic and phenotypic data, a novel species, Nocardioides ginsengagri sp. nov., is proposed. The type strain is BX5-10T ( = KCTC 19467T = DSM 21362T).


2005 ◽  
Vol 55 (1) ◽  
pp. 473-478 ◽  
Author(s):  
Elena V. Pikuta ◽  
Damien Marsic ◽  
Asim Bej ◽  
Jane Tang ◽  
Paul Krader ◽  
...  

A novel, psychrotolerant, facultative anaerobe, strain FTR1T, was isolated from Pleistocene ice from the permafrost tunnel in Fox, Alaska. Gram-positive, motile, rod-shaped cells were observed with sizes 0·6–0·7×0·9–1·5 μm. Growth occurred within the pH range 6·5–9·5 with optimum growth at pH 7·3–7·5. The temperature range for growth of the novel isolate was 0–28 °C and optimum growth occurred at 24 °C. The novel isolate does not require NaCl; growth was observed between 0 and 5 % NaCl with optimum growth at 0·5 % (w/v). The novel isolate was a catalase-negative chemoorganoheterotroph that used as substrates sugars and some products of proteolysis. The metabolic end products were acetate, ethanol and CO2. Strain FTR1T was sensitive to ampicillin, tetracycline, chloramphenicol, rifampicin, kanamycin and gentamicin. 16S rRNA gene sequence analysis showed 99·8 % similarity between strain FTR1T and Carnobacterium alterfunditum, but DNA–DNA hybridization between them demonstrated 39±1·5 % relatedness. On the basis of genotypic and phenotypic characteristics, it is proposed that strain FTR1T (=ATCC BAA-754T=JCM 12174T=CIP 108033T) be assigned to the novel species Carnobacterium pleistocenium sp. nov.


2004 ◽  
Vol 54 (6) ◽  
pp. 2073-2078 ◽  
Author(s):  
David Miñana-Galbis ◽  
Maribel Farfán ◽  
M. Carme Fusté ◽  
J. Gaspar Lorén

Five Aeromonas strains (848TT, 93M, 431E, 849T and 869N), which were isolated from bivalve molluscs and were recognized previously by numerical taxonomy as members of an unknown Aeromonas taxon, were subjected to a polyphasic taxonomic study. DNA–DNA hybridization experiments showed that DNA of strain 848TT was <70 % similar (27–45 %) to that of the type/reference strains of the current Aeromonas hybridization groups (HGs), but 93 % similar to that of strain 93M. The DNA G+C content of the five strains ranged from 59·0 to 59·4 mol%. 16S rRNA gene sequence analysis confirmed that the strains belonged to the genus Aeromonas and showed high similarity to Aeromonas encheleia. Amplified fragment length polymorphism fingerprinting clustered the novel strains in a homogeneous group with low genotypic relatedness to other Aeromonas species. Useful phenotypic features for differentiating the five isolates from other Aeromonas species include their negative reactions in tests for indole production, lysine decarboxylase, gas from glucose and starch hydrolysis. From the results of this study, the name Aeromonas molluscorum sp. nov. is proposed for these strains, with the type strain 848TT (=CECT 5864T=LMG 22214T).


2006 ◽  
Vol 56 (12) ◽  
pp. 2899-2901 ◽  
Author(s):  
Byung-Yong Kim ◽  
Hang-Yeon Weon ◽  
Seung-Hee Yoo ◽  
Seon-Young Lee ◽  
Soon-Wo Kwon ◽  
...  

A Gram-negative, rod-shaped, non-spore-forming bacterium, strain GH9-3T, isolated from greenhouse soil, was investigated in a polyphasic study. The novel organism grew at 10–35 °C, 0–3 % NaCl and pH 5–9. It had ubiquinone 8 (Q-8) as the predominant isoprenoid quinone and possessed C16 : 0, summed feature 3, C17 : 0 cyclo and C18 : 1 ω7c as the major fatty acids (together representing 87.4 % of the total). The DNA G+C content was 67.1 mol%. 16S rRNA gene sequence analysis of strain GH9-3T showed that it grouped within the Variovorax cluster, with highest sequence similarities to Variovorax paradoxus IAM 12373T (98.3 %) and Variovorax dokdonensis DS-43T (98.0 %). DNA–DNA hybridization values between strain GH9-3T and V. paradoxus DSM 30034T and V. dokdonensis DS-43T were 38 and 29 %, respectively. Based on phenotypic, chemotaxonomic and phylogenetic features, it is proposed that strain GH9-3T represents a novel species of the genus Variovorax with the name Variovorax soli sp. nov. The type strain is GH9-3T (=KACC 11579T=DSM 18216T).


2004 ◽  
Vol 54 (6) ◽  
pp. 2175-2179 ◽  
Author(s):  
M. Vancanneyt ◽  
M. Zamfir ◽  
L. A. Devriese ◽  
K. Lefebvre ◽  
K. Engelbeen ◽  
...  

Four isolates, which were obtained from Belgian, Moroccan and Romanian dairy products, constituted a homogeneous but unidentified taxon after screening with whole-cell protein fingerprinting. Complete 16S rRNA gene sequence analysis classified representative strains in the genus Enterococcus. Highest sequence similarities of 98·6 and 98·0 % were obtained with the species Enterococcus sulfureus and Enterococcus saccharolyticus, respectively. Growth characteristics, biochemical features, tRNA intergenic length polymorphism analysis, DNA–DNA hybridization and DNA G+C contents of selected strains demonstrated that they represent a single, novel Enterococcus species. It differs phenotypically from other enterococci in characteristics commonly considered as typical of this genus: no growth in 6·5 % NaCl or 0·4 % sodium azide, and no acid production from a wide range of carbohydrates. The name Enterococcus saccharominimus sp. nov. is proposed for this novel species; the type strain (LMG 21727T=CCM 7220T) was isolated from contaminated pasteurized cow's milk.


2006 ◽  
Vol 56 (8) ◽  
pp. 1765-1769 ◽  
Author(s):  
Daniel Muller ◽  
Diliana D. Simeonova ◽  
Philippe Riegel ◽  
Sophie Mangenot ◽  
Sandrine Koechler ◽  
...  

An arsenite-oxidizing bacterium, designated strain ULPAs1T, was isolated from industrial sludge heavily contaminated with arsenic. Cells of this isolate were Gram-negative, curved rods, motile by means of a polar flagellum. The strain was positive for oxidase and catalase activities, was able to reduce nitrate to nitrite, used acetate, lactate and peptone as organic carbon sources under aerobic conditions and was able to oxidize arsenite (As[III]) to arsenate (As[V]). 16S rRNA gene sequence analysis and the absence of dodecanoic fatty acids suggested that this strain represents a member of the genus Herminiimonas of the family Oxalobacteraceae, order Burkholderiales in the Betaproteobacteria. Genomic DNA–DNA hybridization between strain ULPAs1T and Herminiimonas fonticola S-94T and between strain ULPAs1T and Herminiimonas aquatilis CCUG 36956T revealed levels of relatedness of <10 %, well below the recommended 70 % species cut-off value. Thus, strain ULPAs1T (=CCM 7303T=DSM 17148T=LMG 22961T) is the type strain of a novel species of Herminiimonas, for which the name Herminiimonas arsenicoxydans sp. nov. is proposed.


2010 ◽  
Vol 60 (9) ◽  
pp. 2135-2139 ◽  
Author(s):  
Dong Wan Lee ◽  
Soon Dong Lee

A novel Gram-stain-positive, coccoid actinobacterium, designated strain Sco-D01T, was isolated from volcanic ash collected from Oreum (a parasitic volcanic cone) on Jeju Island, Republic of Korea. Cells were aerobic, oxidase-negative and catalase-positive. Colonies were vivid yellow, circular, smooth and convex. The diagnostic diamino acid in the cell wall was ll-diaminopimelic acid. The predominant menaquinone was MK-8(H4). The polar lipids were phosphatidylinositol, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine and an unknown phospholipid. The fatty acid profile was represented by large amounts of saturated, unsaturated, 10-methyl and hydroxyl components. The DNA G+C content of strain Sco-D01T was 72.0 mol%. 16S rRNA gene sequence analysis revealed that strain Sco-D01T belonged to the family Nocardioidaceae and formed a distinct sublineage within the radiation of the genus Marmoricola. The level of DNA–DNA relatedness between strain Sco-D01T and its closest phylogenetic relative, Marmoricola aurantiacus DSM 12652T, was 30.2 % (35.4 % in duplicate measurements). On the basis of phenotypic and DNA–DNA hybridization data, strain Sco-D01T is considered to represent a novel species of the genus Marmoricola, for which the name Marmoricola scoriae sp. nov. is proposed. The type strain is Sco-D01T (=KCTC 19597T=DSM 22127T).


2006 ◽  
Vol 56 (4) ◽  
pp. 815-819 ◽  
Author(s):  
P. Kämpfer ◽  
K. Denger ◽  
A. M. Cook ◽  
S.-T. Lee ◽  
U. Jäckel ◽  
...  

Comparative 16S rRNA gene sequence analysis indicates that two distinct sublineages exist within the genus Alcaligenes: the Alcaligenes faecalis lineage, comprising Alcaligenes aquatilis and A. faecalis (with the three subspecies A. faecalis subsp. faecalis, A. faecalis subsp. parafaecalis and A. faecalis subsp. phenolicus), and the Alcaligenes defragrans lineage, comprising A. defragrans. This phylogenetic discrimination is supported by phenotypic and chemotaxonomic differences. It is proposed that the A. defragrans lineage constitutes a distinct genus, for which the name Castellaniella gen. nov. is proposed. The type strain for Castellaniella defragrans gen. nov., comb. nov. is 54PinT (=CCUG 39790T=CIP 105602T=DSM 12141T). Finally, on the basis of data from the literature and new DNA–DNA hybridization and phenotypic data, the novel species Castellaniella denitrificans sp. nov. (type strain NKNTAUT=DSM 11046T=CCUG 39541T) is proposed for two strains previously identified as strains of A. defragrans.


Sign in / Sign up

Export Citation Format

Share Document