scholarly journals Reclassification of Bacteroides distasonis, Bacteroides goldsteinii and Bacteroides merdae as Parabacteroides distasonis gen. nov., comb. nov., Parabacteroides goldsteinii comb. nov. and Parabacteroides merdae comb. nov.

2006 ◽  
Vol 56 (7) ◽  
pp. 1599-1605 ◽  
Author(s):  
Mitsuo Sakamoto ◽  
Yoshimi Benno

The characteristics of three Bacteroides species, Bacteroides distasonis, Bacteroides goldsteinii and Bacteroides merdae, were examined. 16S rRNA gene sequence analysis showed that B. distasonis, B. goldsteinii and B. merdae should not be classified as species within the genus Bacteroides. Although B. distasonis, B. goldsteinii and B. merdae were phylogenetically related to Tannerella forsythensis, the ratios of anteiso-C15 : 0 to iso-C15 : 0 in whole-cell methanolysates of the three species were different from that of T. forsythensis. In addition, whereas the major menaquinones of T. forsythensis were MK-10 and MK-11, the major menaquinones of B. distasonis, B. goldsteinii and B. merdae were MK-9 and MK-10. The three species were phenotypically similar to Bacteroides sensu stricto, but phylogenetically distinct. Furthermore, B. distasonis, B. goldsteinii and B. merdae could be differentiated from Bacteroides sensu stricto (predominant menaquinones: MK-10 and MK-11) by the menaquinone composition. This is an important chemotaxonomic characteristic of the three species. On the basis of these data, a novel genus, Parabacteroides gen. nov., is proposed for B. distasonis, B. goldsteinii and B. merdae, with three species, Parabacteroides distasonis gen. nov., comb. nov. (the type species), Parabacteroides goldsteinii comb. nov. and Parabacteroides merdae comb. nov. The type strains of P. distasonis, P. goldsteinii and P. merdae are JCM 5825T (=CCUG 4941T=DSM 20701T=ATCC 8503T), JCM 13446T (=CCUG 48944T) and JCM 9497T (=CCUG 38734T=ATCC 43184T), respectively.

2015 ◽  
Vol 65 (Pt_1) ◽  
pp. 195-200 ◽  
Author(s):  
Peter Kämpfer ◽  
Karin Martin ◽  
John A. McInroy ◽  
Stefanie P. Glaeser

A yellow, Gram-stain-negative, rod-shaped, non-spore-forming bacterium (strain JM-1T) was isolated from the rhizosphere of a field-grown Zea mays plant in Auburn, AL, USA. 16S rRNA gene sequence analysis of strain JM-1T showed high sequence similarity to the type strains of Novosphingobium capsulatum (98.9 %), Novosphingobium aromaticivorans (97.4 %), Novosphingobium subterraneum (97.3 %) and Novosphingobium taihuense (97.1 %); sequence similarities to all other type strains of species of the genus Novosphingobium were below 97.0 %. DNA–DNA hybridizations of strain JM-1T and N. capsulatum DSM 30196T, N. aromaticivorans SMCC F199T and N. subterraneum SMCC B0478T showed low similarity values of 33 % (reciprocal: 21 %), 14 % (reciprocal 16 %) and 36 % (reciprocal 38 %), respectively. Ubiquinone Q-10 was detected as the major respiratory quinone. The predominant fatty acid was C18 : 1ω7c (71.0 %) and the typical 2-hydroxy fatty acid C14 : 0 2-OH (11.7 %) was detected. The polar lipid profile contained the diagnostic lipids diphosphatidylglycerol, phosphatidylethanolamine, sphingoglycolipid and phosphatidylcholine. Characterization by 16S rRNA gene sequence analysis, physiological parameters, pigment analysis, and ubiquinone, polar lipid and fatty acid composition revealed that strain JM-1T represents a novel species of the genus Novosphingobium . For this species we propose the name Novosphingobium rhizosphaerae sp. nov. with the type strain JM-1T ( = LMG 28479T = CCM 8547T).


2013 ◽  
Vol 63 (Pt_7) ◽  
pp. 2588-2593 ◽  
Author(s):  
Bárbara Almeida ◽  
Ivone Vaz-Moreira ◽  
Peter Schumann ◽  
Olga C. Nunes ◽  
Gilda Carvalho ◽  
...  

A Gram-positive, aerobic, non-motile, non-endospore-forming rod-shaped bacterium with ibuprofen-degrading capacity, designated strain I11T, was isolated from activated sludge from a wastewater treatment plant. The major respiratory quinone was demethylmenaquinone DMK-7, C18 : 1 cis9 was the predominant fatty acid, phosphatidylglycerol was the predominant polar lipid, the cell wall contained meso-diaminopimelic acid as the diagnostic diamino acid and the G+C content of the genomic DNA was 74.1 mol%. On the basis of 16S rRNA gene sequence analysis, the closest phylogenetic neighbours of strain I11T were Patulibacter ginsengiterrae CECT 7603T (96.8 % similarity), Patulibacter minatonensis DSM 18081T (96.6 %) and Patulibacter americanus DSM 16676T (96.6 %). Phenotypic characterization supports the inclusion of strain I11T within the genus Patulibacter (phylum Actinobacteria) . However, distinctive features and 16S rRNA gene sequence analysis suggest that is represents a novel species, for which the name Patulibacter medicamentivorans sp. nov. is proposed. The type strain is I11T ( = DSM 25962T = CECT 8141T).


2011 ◽  
Vol 61 (8) ◽  
pp. 1968-1972 ◽  
Author(s):  
Myungjin Lee ◽  
Song-Geun Woo ◽  
Giho Park ◽  
Myung Kyum Kim

A Gram-negative, non-motile bacterium, designated MJ17T, was isolated from sludge at the Daejeon sewage disposal plant in South Korea. Comparative 16S rRNA gene sequence analysis showed that strain MJ17T belonged to the genus Paracoccus in the family Rhodobacteraceae of the class Alphaproteobacteria. 16S rRNA gene sequence similarities between strain MJ17T and type strains of species of the genus Paracoccus were 94.1–97.4 %. The highest similarities were between strain MJ17T and Paracoccus homiensis DD-R11T, Paracoccus zeaxanthinifaciens ATCC 21588T and Paracoccus alcaliphilus JCM 7364T (97.4, 97.2 and 96.3 %, respectively). Strain MJ17T exhibited <22 % DNA–DNA relatedness with P. homiensis KACC 11518T and P. zeaxanthinifaciens JCM 21774T. The G+C content of the genomic DNA was 58.7 mol%. Strain MJ17T contained ubiquinone Q-10. The major fatty acids were C18 : 0 (11.3 %), C16 : 0 (10.2 %) and summed feature 7 (containing one or more of C18 : 1ω7c, C18 : 1ω9c and C18 : 1ω12t; 54.3 %). Poly-β-hydroxybutyrate granules are formed. On the basis of phenotypic and genotypic properties and phylogenetic distinctiveness, strain MJ17T should be classified in a novel species of the genus Paracoccus, for which the name Paracoccus caeni sp. nov. is proposed. The type strain is MJ17T ( = KCTC 22480T  = JCM 16385T  = KEMB 9004-001T).


2010 ◽  
Vol 60 (4) ◽  
pp. 914-918 ◽  
Author(s):  
Eun-Jin Park ◽  
Min-Soo Kim ◽  
Seong Woon Roh ◽  
Mi-Ja Jung ◽  
Jin-Woo Bae

A novel actinobacterium, strain P30T, was isolated from jeotgal, a traditional Korean fermented seafood. Cells were aerobic, Gram-positive, non-motile and coccoid. Optimal growth occurred at 30–37 °C, at pH 8–9 and in the presence of 0–2 % (w/v) NaCl. Based on 16S rRNA gene sequence analysis, strain P30T was phylogenetically closely related to Kocuria carniphila, Kocuria gwangalliensis, Kocuria rhizophila, Kocuria marina, Kocuria rosea and K. varians with levels of similarity of 98.6, 98.2, 98.1, 97.4, 97.3 and 97.3 %, respectively, to the type strains of these species. Levels of DNA–DNA relatedness between strain P30T and the type strains of K. carniphila, K. rhizophila, K. marina, K. rosea and K. varians were 37, 43, 37, 25 and 17 %, respectively. The predominant menaquinone of strain P30T was MK-7. Major cellular fatty acids were anteiso-C15 : 0, iso-C15 : 0 and iso-C16 : 0. The genomic DNA G+C content of strain P30T was 70.2 mol%. Based on these data, strain P30T is considered to represent a novel species of the genus Kocuria, for which the name Kocuria atrinae sp. nov. is proposed. The type strain is P30T (=KCTC 19594T=JCM 15914T).


2006 ◽  
Vol 56 (9) ◽  
pp. 2153-2156 ◽  
Author(s):  
Hang-Yeon Weon ◽  
Byung-Yong Kim ◽  
Seung-Hee Yoo ◽  
Youn-Kyung Baek ◽  
Seon-Young Lee ◽  
...  

A novel bacterium, designated strain H3-R18T, was isolated from seashore sand collected from Homi cape, Pohang city, Korea. Cells were Gram-negative, aerobic, non-motile, cream-coloured, mesophilic and slightly halotolerant. 16S rRNA gene sequence analysis indicated that the organism was a member of the genus Pseudomonas, but the sequence showed ⩽96.3 % sequence similarity to that of the type strains of all recognized Pseudomonas species. Highest sequence similarities were to Pseudomonas brenneri CFML 97-391T (96.3 %) and Pseudomonas migulae CIP 105470T (96.3 %). The major fatty acids were summed feature 3 and C16 : 0, with lesser amounts of C12 : 0, C12 : 0 3-OH, C18 : 1ω7c and C14 : 0. The major isoprenoid quinone was Q-9. The DNA G+C content was 64.0 mol%. The phylogenetic, phenotypic and genetic properties of strain H3-R18T suggest that it represents a novel species, for which the name Pseudomonas pohangensis sp. nov. is proposed. The type strain is H3-R18T (=KACC 11517T=DSM 17875T).


2012 ◽  
Vol 62 (Pt_6) ◽  
pp. 1241-1244 ◽  
Author(s):  
Mitsuo Sakamoto ◽  
Moriya Ohkuma

Strains of the recently proposed species Bacteroides chinchillae share more than 99.4 % 16S rRNA gene sequence similarity with the type strain of Bacteroides sartorii although these two species do not appear to be similar from their published descriptions. The aim of this study was to perform phenotypic and genetic analyses of both species to clarify their taxonomic position. B. chinchillae JCM 16497T exhibited high hsp60 gene sequence similarity with B. sartorii JCM 17136T (100 %) as well as B. chinchillae JCM 16498 (100 %). The hsp60 gene sequence analysis and levels of DNA–DNA relatedness observed demonstrated B. sartorii JCM 17136T, B. chinchillae JCM 16497T, and B. chinchillae JCM 16498 are members of a single species. Based on these data, we propose Bacteroides chinchillae as a later heterotypic synonym of Bacteroides sartorii . An emended description of B. sartorii is provided.


2012 ◽  
Vol 62 (Pt_5) ◽  
pp. 1121-1127 ◽  
Author(s):  
An Coorevits ◽  
Anna E. Dinsdale ◽  
Jeroen Heyrman ◽  
Peter Schumann ◽  
Anita Van Landschoot ◽  
...  

‘Bacillus macroides’ ATCC 12905T ( = DSM 54T = LMG 18474T), isolated in 1947 from cow dung, was not included in the Approved Lists of Bacterial Names and so it lost standing in bacteriological nomenclature. Reinvestigation of the strain, including DNA–DNA relatedness experiments, revealed that ‘Bacillus macroides’ is genomically distinct from its closest relatives Lysinibacillus xylanilyticus , Lysinibacillus boronitolerans and Lysinibacillus fusiformis (as determined by 16S rRNA gene sequence analysis, with pairwise similarity values of 99.2, 98.8 and 98.5 %, respectively, with the type strains of these species). Further analysis showed that ‘Bacillus macroides’ shares the A4α l-Lys–d-Asp peptidoglycan type with other members of the genus Lysinibacillus and can thus be attributed to this genus. These results, combined with additional phenotypic data, justify the description of strain LMG 18474T ( = DSM 54T = ATCC 12905T) as Lysinibacillus macroides sp. nov., nom. rev.


2020 ◽  
Vol 70 (11) ◽  
pp. 5824-5831 ◽  
Author(s):  
Peter Kämpfer ◽  
S. P. Glaeser ◽  
John A. McInroy ◽  
Jia Xu ◽  
Hans-Jürgen Busse ◽  
...  

A Gram-staining-negative non endospore-forming strain, PXU-55T, was isolated from the rhizosphere of the switchgrass Panicum virgatum and studied in detail to determine its taxonomic position. The results of 16S rRNA gene sequence analysis indicated that the isolate represented a member of the genus Flavobacterium . The isolate shared highest 16S rRNA gene sequence similarities with the type strains of Flavobacterium chungangense (98.78 %) and Flavobacterium chilense (98.64 %). The average nucleotide identity (ANI) and in silico DNA–DNA hybridization (isDDH) values between the PXU-55T genome assembly and the ones of the most closely related type strains of species of the genus Flavobacterium were 87.3 and 31.9% ( Flavobacterium defluvii ), and 86.1 and 29.9% ( Flavobacterium johnsoniae ). Menaquinone MK-6 was the major respiratory quinone. As major polar lipids, phosphatidylethanolamine, an ornithine lipid and the unidentified polar lipids L2, L3 and L4 lacking a functional group were found. Moderate to minor amounts of another ornithine lipid, the unidentified lipid L1 and a glycolipid were present, as well. The major polyamine is sym-homospermidine. The fatty acid profiles contained major amounts of iso-C15:0, iso-C15:0 3-OH, iso-C17:0 3-OH, C15:0, summed feature 3 (C16:1ω7c and/or iso-C15:0 2-OH) and various hydroxylated fatty acids in smaller amounts, among them iso C16:0 3-OH, C16:0 3-OH and C15:0 3-OH, which supported the classification of the isolate as a member of the genus Flavobacterium . Physiological and biochemical characterisation and ANI calculations with the type strains of the most closely related species allowed a clear phenotypic and genotypic differentiation of the strain. For this reason, we propose that strain PXU-55T (=CIP 111646T=CCM 8914T) represents a novel species with the name Flavobacterium panici sp. nov.


2020 ◽  
Vol 70 (12) ◽  
pp. 6220-6225 ◽  
Author(s):  
Yanyan Li ◽  
Yu Wang ◽  
Yina Wang ◽  
Fang Lin ◽  
Hongmei Zhu ◽  
...  

A novel Gram-stain-negative, rod-shaped, aerobic, oxidase-positive and catalase-positive bacterium of the genus Pseudooceanicola , designated strain E2-1T, was isolated from surface water of Jiulong River Estuary, PR China. Cells of strain E2-1T grew in medium containing 0.5–12 % NaCl (w/v; optimum, 2–4 %), at 15–45 °C (optimum, 28–33 °C) and at pH 7.0–9.0 (optimum, pH 7.0–8.0). Comparative analyses of the 16S rRNA gene sequence revealed that strain E2-1T had the highest similarity to Pseudooceanicola nitratireducens JLT1210T (97.3 %) and Pseudooceanicola batsensis HTCC2597T (97.1 %), and had less than 97.0 % 16S rRNA gene sequence similarity to other type strains within the genus Pseudooceanicola . The DNA G+C content of strain E2-1T was 65.7 mol%. The average nucleotide identity and digital DNA–DNA hybridization relatedness values between E2-1T and related type strains were 75.0 and 20.1 % with P. nitratireducens JLT1210T and 75.6 and 20.4 % with P. batsensis HTCC2597T, respectively. The sole isoprenoid quinone was Q-10; the predominant polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, three unidentified phospholipids and six unidentified lipids; the major cellular fatty acids were C16 : 0 (17.5 %), C19 : 0 cyclo ω8c (22.7 %) and summed feature 8 (C18 : 1  ω7c/C18 : 1  ω6c; 10.1 %). According to the phylogenetic and genotypic results, strain E2-1T represents a novel species in the genus Pseudooceanicola , for which the name Pseudooceanicola aestuarii sp. nov. is proposed. The type strain is E2-1T (=MCCC 1K03742T=KCTC 72107T).


2012 ◽  
Vol 62 (Pt_7) ◽  
pp. 1470-1485 ◽  
Author(s):  
An Coorevits ◽  
Anna E. Dinsdale ◽  
Gillian Halket ◽  
Liesbeth Lebbe ◽  
Paul De Vos ◽  
...  

Sixty-two strains of thermophilic aerobic endospore-forming bacteria were subjected to polyphasic taxonomic study including 16S rRNA gene sequence analysis, polar lipid and fatty acid analysis, phenotypic characterization, and DNA–DNA hybridization experiments. Distinct clusters of the species Geobacillus stearothermophilus , Geobacillus thermodenitrificans , Geobacillus toebii and Geobacillus thermoglucosidasius were formed, allowing their descriptions to be emended, and the distinctiveness of the poorly represented species Geobacillus jurassicus , Geobacillus subterraneus and Geobacillus caldoxylosilyticus was confirmed. It is proposed that the name Geobacillus thermoglucosidasius be corrected to Geobacillus thermoglucosidans nom. corrig. Bacillus thermantarcticus clustered between Geobacillus species on the basis of 16S rRNA gene sequence analysis, and its transfer to the genus Geobacillus as Geobacillus thermantarcticus comb. nov. (type strain LMG 23032T = DSM 9572T = strain M1T = R-35644T) is proposed. The above-mentioned species, together with Geobacillus thermoleovorans and Geobacillus thermocatenulatus , form a monophyletic cluster representing the genus Geobacillus . The distinctiveness of ‘Geobacillus caldoproteolyticus’ was confirmed and it is proposed that it be accommodated, along with Geobacillus tepidamans , in the genus Anoxybacillus as Anoxybacillus caldiproteolyticus sp. nov. (type strain DSM 15730T = ATCC BAA-818T = LMG 26209T = R-35652T) and Anoxybacillus tepidamans comb. nov. (type strain LMG 26208T = ATCC BAA-942T = DSM 16325T = R-35643T), respectively. The type strain of Geobacillus debilis was not closely related to any members of the genera Anoxybacillus and Geobacillus , and it is proposed that this species be placed in the new genus Caldibacillus as Caldibacillus debilis gen. nov. comb. nov. The type strain of the type species, Caldibacillus debilis, is LMG 23386T ( = DSM 16016T = NCIMB 13995T = TfT = R-35653T).


Sign in / Sign up

Export Citation Format

Share Document