scholarly journals Amycolatopsis australiensis sp. nov., an actinomycete isolated from arid soils

2006 ◽  
Vol 56 (10) ◽  
pp. 2297-2301 ◽  
Author(s):  
Geok Yuan Annie Tan ◽  
Stuart Robinson ◽  
Ernest Lacey ◽  
Michael Goodfellow

The taxonomic position of a group of mesophilic actinomycetes isolated from arid Australian soils was determined using a polyphasic approach. The organisms shared chemical and morphological markers typical of members of the genus Amycolatopsis. They had identical 16S rRNA gene sequences and formed a distinct phyletic line in the Amycolatopsis mediterranei clade, being most closely related to A. mediterranei. In addition, they shared a range of phenotypic properties that distinguished them from representatives of all of the species classified in this clade. The combined genotypic and phenotypic data indicate that the strains merit species status within the genus Amycolatopsis. The name proposed for the novel species is Amycolatopsis australiensis sp. nov.; the type strain is GY048T (=DSM 44671T=NCIMB 14142T).

2011 ◽  
Vol 61 (7) ◽  
pp. 1667-1670 ◽  
Author(s):  
M. Tseng ◽  
H. C. Liao ◽  
W. P. Chiang ◽  
G. F. Yuan

A novel actinomycete, designated strain 06182M-1T, was isolated from a mangrove soil sample collected from Chiayi County in Taiwan. Phylogenetic analysis based on 16S rRNA gene sequences revealed levels of similarity of 97.0–98.8 % to the type strains of recognized species of the genus Isoptericola. Chemotaxonomic data also supported the placement of strain 06182M-1T within the genus Isoptericola. However, the low levels of DNA–DNA relatedness between the novel strain and the type strains of recognized species of the genus Isoptericola, in combination with differential phenotypic data, demonstrate that strain 06182M-1T represents a novel species of the genus Isoptericola, for which the name Isoptericola chiayiensis sp. nov. is proposed. The type strain is 06182M-1T ( = BCRC 16888T  = KCTC 19740T).


2010 ◽  
Vol 60 (5) ◽  
pp. 1135-1140 ◽  
Author(s):  
Jia Tong ◽  
Chengxu Liu ◽  
Paula H. Summanen ◽  
Huaxi Xu ◽  
Sydney M. Finegold

A coryneform strain, 06-1773OT (=WAL 19168T), derived from a groin abscess sample was characterized using phenotypic and molecular taxonomic methods. Comparative analyses revealed more than 3 % divergence of the 16S rRNA gene sequence and about 10 % divergence of the partial rpoB gene sequence from the type strain of Corynebacterium glucuronolyticum. The strain could also be differentiated from C. glucuronolyticum by a set of phenotypic properties. A DNA–DNA relatedness study between strain WAL 19168T and C. glucuronolyticum CCUG 35055T showed a relatedness value of 13.3 % (13.7 % on repeat analysis). The genotypic and phenotypic data show that the strain merits classification within a novel species of Corynebacterium. We propose the name Corynebacterium pyruviciproducens sp. nov. for the novel species. The type strain is 06-1773OT (=WAL 19168T =CCUG 57046T =ATCC BAA-1742T).


2007 ◽  
Vol 57 (7) ◽  
pp. 1640-1646 ◽  
Author(s):  
Marc René Carlsohn ◽  
Ingrid Groth ◽  
Geok Yuan Annie Tan ◽  
Barbara Schütze ◽  
Hans-Peter Saluz ◽  
...  

Three actinomycetes isolated from the surfaces of rocks in a medieval slate mine were examined in a polyphasic taxonomic study. Chemotaxonomic and morphological characteristics of the isolates were typical of strains of the genus Amycolatopsis. The isolates had identical 16S rRNA gene sequences and formed a distinct phyletic line towards the periphery of the Amycolatopsis mediterranei clade, being most closely related to Amycolatopsis rifamycinica. The organisms shared a wide range of genotypic and phenotypic markers that distinguished them from their closest phylogenetic neighbours. On the basis of these results, a novel species, Amycolatopsis saalfeldensis sp. nov., is proposed. The type strain is HKI 0457T (=DSM 44993T=NRRL B-24474T).


2005 ◽  
Vol 55 (5) ◽  
pp. 2057-2061 ◽  
Author(s):  
Danielle Saintpierre-Bonaccio ◽  
Hamid Amir ◽  
René Pineau ◽  
G. Y. Annie Tan ◽  
Michael Goodfellow

The taxonomic position of an actinomycete isolated from a brown hypermagnesian ultramafic soil was examined using a polyphasic approach. The organism, which was designated SBHS Strp1T, was found to have chemical and morphological properties typical of Amycolatopsis strains. It was most closely associated with Amycolatopsis kentuckyensis, Amycolatopsis lexingtonensis, Amycolatopsis rifamycinica, Amycolatopsis pretoriensis and Amycolatopsis tolypomycina on the basis of 16S rRNA gene sequence data, and showed a unique pattern of phenotypic properties that distinguished it from the type strains of these taxa. The combined genotypic and phenotypic data show that the organism merits description as a novel species of Amycolatopsis. The name proposed for the novel species is Amycolatopsis plumensis sp. nov.; the type strain is SBHS Strp1T (=DSM 44776T=NRRL B-24324T).


2007 ◽  
Vol 57 (11) ◽  
pp. 2613-2617 ◽  
Author(s):  
C. C. Young ◽  
M.-J. Ho ◽  
A. B. Arun ◽  
W.-M. Chen ◽  
W.-A. Lai ◽  
...  

The taxonomic status of a yellow-coloured bacterial isolate from an oil-contaminated soil sample was determined using a polyphasic taxonomic approach. Comparative analysis of 16S rRNA gene sequences showed that the novel isolate formed a distinct phyletic line within the genus Sphingobium. The generic assignment was confirmed by chemotaxonomic data, which revealed: a fatty acid profile that is characteristic of the genus Sphingobium consisting of straight-chain saturated and unsaturated as well as 2-OH fatty acids; a ubiquinone with ten isoprene units (Q-10) as the predominant respiratory quinone; a polar lipid pattern consisting of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylcholine and sphingoglycolipid, and spermidine as the major polyamine component. Genotypic and phenotypic data show that the new isolate merits classification as a representative of a novel species of the genus Sphingobium, for which the name Sphingobium olei sp. nov. is proposed. The type strain is IMMIB HF-1T (=DSM 18999T=CCUG 54329T).


2006 ◽  
Vol 56 (10) ◽  
pp. 2303-2307 ◽  
Author(s):  
Wasu Pathom-aree ◽  
Yuichi Nogi ◽  
Alan C. Ward ◽  
Koki Horikoshi ◽  
Alan T. Bull ◽  
...  

The taxonomic positions of two actinobacterial strains isolated from Mariana Trench sediment were established using a combination of genotypic and phenotypic data. The strains, isolates MT2.1T and MT2.2T, formed a distinct phyletic line in the Micrococcineae 16S rRNA gene tree together with Dermacoccus abyssi NCIMB 14084T. The isolates had chemical and phenotypic properties typical of members of the genus Dermacoccus and could be distinguished sharply from one another and from the type strains of Dermacoccus abyssi and Dermacoccus nishinomiyaensis using DNA–DNA relatedness data. A range of phenotypic properties served to distinguish the two novel strains from one another and from the type strains of established Dermacoccus species. The G+C contents of the DNAs of strains MT2.1T and MT2.2T were 66.8 and 69.1 mol%, respectively. It is evident that the two isolates merit recognition as novel species within the genus Dermacoccus. The names proposed for these taxa are Dermacoccus barathri sp. nov. (type strain MT2.1T=DSM 17574T=NCIMB 14081T) and Dermacoccus profundi sp. nov. (type strain MT2.2T=DSM 17575T=NCIMB 14084T).


2006 ◽  
Vol 56 (4) ◽  
pp. 733-737 ◽  
Author(s):  
Wen-Jun Li ◽  
Yu-Qin Zhang ◽  
Peter Schumann ◽  
Hua-Hong Chen ◽  
Wael N. Hozzein ◽  
...  

A coccoid, non-motile actinobacterium, designated strain YIM 70003T, was isolated from a saline, alkaline, desert-soil sample from Egypt. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the organism formed a distinct phyletic line within the genus Kocuria and was most closely related to Kocuria polaris DSM 14382T (98·6 % sequence similarity) and Kocuria rosea DSM 20447T (98·2 %). Chemotaxonomic data, including the Lys–Ala3 peptidoglycan type, the presence of phosphatidylglycerol and diphosphatidylglycerol as the predominant phospholipids, the presence of MK-8(H2) and MK-9(H2) as the major menaquinones, the predominance of fatty acids ai-C15 : 0 and i-C15 : 0 and the DNA G+C content, also supported the affiliation of the isolate to the genus Kocuria. The low DNA–DNA relatedness with K. polaris DSM 14382T (56·6 %) and K. rosea DSM 20447T (15·5 %) in combination with phenotypic data show that strain YIM 70003T should be classified as a novel species of the genus Kocuria. The name Kocuria aegyptia sp. nov. is proposed, with strain YIM 70003T (=CCTCC AA203006T=CIP 107966T=KCTC 19010T=DSM 17006T) as the type strain.


2011 ◽  
Vol 61 (2) ◽  
pp. 310-314 ◽  
Author(s):  
Byung-Yong Kim ◽  
Roselyn Brown ◽  
David P. Labeda ◽  
Michael Goodfellow

In the course of a polyphasic study it was observed that ‘Dactylosporangium variesporum’ NRRL B-16296 is misclassified in the genus Dactylosporangium as it exhibits properties consistent with its assignment to the genus Saccharothrix. Phylogenetic analyses based on 16S rRNA gene sequences show that the strain falls within the evolutionary radiation of the genus Saccharothrix, a result which is supported by corresponding chemotaxonomic and morphological markers. The strain is phylogenetically most closely, albeit loosely, related to Saccharothrix espanaensis, but can be readily distinguished from this and other species of the genus Saccharothrix with validly described names by using a range of phenotypic properties. The combined genotypic and phenotypic data demonstrate conclusively that this strain should be classified as a new species in the genus Saccharothrix for which the name Saccharothrix variisporea sp. nov. is proposed. The type strain is NRRL B-16296T (=ATCC 31203T =DSM 43911T =JCM 3273T =NBRC 14104T).


2007 ◽  
Vol 57 (5) ◽  
pp. 1148-1153 ◽  
Author(s):  
Shih-Yi Sheu ◽  
Kuan-Yin Lin ◽  
Jui-Hsing Chou ◽  
Poh-Shing Chang ◽  
A. B. Arun ◽  
...  

A yellow-coloured, aerobic, Gram-negative, rod-shaped bacterial strain, designated B-IT, was isolated from the water of a shrimp (Litopenaeus vannamei) mariculture pond in Taiwan. No species with a validly published name showed 16S rRNA gene sequence similarity of more than 96.5 % to this novel isolate. The highest sequence similarities displayed by strain B-IT (93.2–96.1 %) were to members of the genus Tenacibaculum. The phenotypic properties of this organism were consistent with its classification in the genus Tenacibaculum. The novel isolate could be distinguished from all Tenacibaculum species by several phenotypic characteristics. The major fatty acids were iso-C15 : 0 (22 %), summed feature 3 (C16 : 1 ω7c and/or iso-C15 : 0 2-OH; 21.3 %), iso-C17 : 0 3-OH (12.7 %) and iso-C15 : 1 (8.7 %). The G+C content of the genomic DNA was 35.2 mol%. Hence, genotypic and phenotypic data demonstrate that strain B-IT should be classified within a novel species in the genus Tenacibaculum, for which the name Tenacibaculum litopenaei sp. nov. is proposed. The type strain is B-IT (=BCRC 17590T=LMG 23706T).


2011 ◽  
Vol 61 (7) ◽  
pp. 1606-1611 ◽  
Author(s):  
Enrico Tortoli ◽  
Erik C. Böttger ◽  
Anna Fabio ◽  
Enevold Falsen ◽  
Zoe Gitti ◽  
...  

Four strains isolated in the last 15 years were revealed to be identical in their 16S rRNA gene sequences to MCRO19, the sequence of which was deposited in GenBank in 1995. In a polyphasic analysis including phenotypic and genotypic features, the five strains (including MCRO19), which had been isolated in four European countries, turned out to represent a unique taxonomic entity. They are scotochromogenic slow growers and are genetically related to the group that included Mycobacterium simiae and 15 other species. The novel species Mycobacterium europaeum sp. nov. is proposed to accommodate these five strains. Strain FI-95228T ( = DSM 45397T  = CCUG 58464T) was chosen as the type strain. In addition, a thorough revision of the phenotypic and genotypic characters of the species related to M. simiae was conducted which leads us to suggest the denomination of the ‘Mycobacterium simiae complex’ for this group.


Sign in / Sign up

Export Citation Format

Share Document