scholarly journals Francisella philomiragia subsp. noatunensis subsp. nov., isolated from farmed Atlantic cod (Gadus morhua L.)

2007 ◽  
Vol 57 (9) ◽  
pp. 1960-1965 ◽  
Author(s):  
J. Mikalsen ◽  
A. B. Olsen ◽  
T. Tengs ◽  
D. J. Colquhoun

Seven bacterial isolates from farmed Atlantic cod displaying chronic granulomatous disease were characterized by phenotypic and molecular taxonomic methods. The isolates were Gram-negative, facultatively intracellular, non-motile, strictly aerobic coccobacilli which produced H2S from cysteine-supplemented media and are therefore phenotypically consistent with members of the genus Francisella. Comparison of 16S rRNA gene sequences and six partial housekeeping gene sequences (groEL, shdA, rpoB, rpoA, pgm and atpA) confirmed the organism as a member of the genus Francisella, with Francisella philomiragia as its closest relative (99.3 % 16S rRNA gene sequence similarity, 92.2–99.0 % housekeeping gene sequence similarity). Despite the close relationship with F. philomiragia, isolates from Atlantic cod could be readily distinguished phenotypically and genetically from F. philomiragia ATCC 25015T. DNA–DNA hybridization studies revealed a mean reassociation value of 68 %. Thus, on the basis of phenotypic and molecular genetic evidence, we propose that the strains isolated from Atlantic cod should be recognized as Francisella philomiragia subsp. noatunensis subsp. nov. with the type strain 2005/50/F292-6CT (=NCIMB 14265T=LMG 23800T). Francisella philomiragia ATCC 25015T (=DSM 735T) is reclassified as Francisella philomiragia subsp. philomiragia subsp. nov.

2010 ◽  
Vol 60 (10) ◽  
pp. 2377-2381 ◽  
Author(s):  
Xiang He ◽  
Ting Xiao ◽  
Haiju Kuang ◽  
Xiaojun Lan ◽  
Maripat Tudahong ◽  
...  

A Gram-staining-negative, yellow-coloured, strictly aerobic, non-spore-forming, rod-shaped bacterium, designated HS39T, isolated from a soil sample collected from a natural Populus euphratica forest in Xinjiang, China, was characterized using a polyphasic approach. The isolate grew optimally at 30–37 °C, at pH 6.5–8.0 and with 0–3 % NaCl. Analysis of the 16S rRNA gene sequence of strain HS39T revealed that it is a member of the genus Sphingobacterium. Sphingobacterium mizutaii ATCC 33299T was the nearest relative (94.0 % 16S rRNA gene sequence similarity). The G+C content of the genomic DNA was 40.2 mol%. The major fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 3 (comprising C16 : 1 ω6c and/or C16 : 1 ω7c). The predominant isoprenoid quinone was MK-7. On the basis of phenotypic properties and phylogenetic inference, strain HS39T represents a novel species of the genus Sphingobacterium, for which the name Sphingobacterium shayense sp. nov. is proposed. The type strain is HS39T (=CCTCC AB 209006T =NRRL B-59203T).


2006 ◽  
Vol 56 (11) ◽  
pp. 2523-2527 ◽  
Author(s):  
Sabri M. Naser ◽  
Marc Vancanneyt ◽  
Cindy Snauwaert ◽  
Gino Vrancken ◽  
Bart Hoste ◽  
...  

The taxonomic position of six Lactobacillus amylophilus strains isolated from swine waste-corn fermentations was reinvestigated. All strains were included in a multilocus sequence analysis (MLSA) study for species identification of Lactobacillus using the genes encoding the phenylalanyl-tRNA synthase alpha subunit (pheS) and RNA polymerase alpha subunit (rpoA). Partial pheS and rpoA gene sequences showed that strains LMG 11400 and NRRL B-4435 represent a separate lineage that is distantly related to the type strain of L. amylophilus, LMG 6900T, and to three other strains of the species. The MLSA data showed that the two strains LMG 11400 and NRRL B-4435 constituted a distinct cluster, sharing 100 % pheS and rpoA gene sequence similarity. The other reference strains clustered together with the type strain of L. amylophilus, LMG 6900T, and were clearly differentiated from strains LMG 11400 and NRRL B-4435 (80 and 89 % pheS and rpoA gene sequence similarity, respectively). The 16S rRNA gene sequences of the latter two strains are 100 % identical, with the nearest phylogenetic neighbour L. amylophilus LMG 6900T showing only 97.2 % 16S rRNA gene sequence similarity. Further polyphasic taxonomic study based on whole-cell protein fingerprinting, DNA–DNA hybridization and biochemical features demonstrated that the two strains represent a single, novel Lactobacillus species, for which the name Lactobacillus amylotrophicus sp. nov. is proposed. The type strain is LMG 11400T (=NRRL B-4436T=DSM 20534T).


2010 ◽  
Vol 60 (3) ◽  
pp. 680-685 ◽  
Author(s):  
Gi Duk Bae ◽  
Chung Yeon Hwang ◽  
Hye Min Kim ◽  
Byung Cheol Cho

A Gram-negative, strictly aerobic bacterium, designated CL-ES53T, was isolated from surface water of the East Sea in Korea. Cells of strain CL-ES53T were short rods and motile by means of monopolar flagella. Strain CL-ES53T grew with 4–21 % NaCl (optimum 10 %) and at 5–40 °C (optimum 25 °C) and pH 5.2–8.8 (optimum pH 6.3–7.2). The major isoprenoid quinone was Q-8. The major fatty acids were C18 : 1 ω7c (42.0 %), C18 : 1 ω9c (14.8 %) and C14 : 0 (9.4 %). The genomic DNA G+C content was 64.9 mol%. Analysis of the 16S rRNA gene sequence of strain CL-ES53T revealed that it was a member of the genus Salinisphaera and most closely related to Salinisphaera shabanensis E1L3A T (96.9 % sequence similarity) and Salinisphaera hydrothermalis EPR70T (93.8 %). Phylogenetic analyses based on the 16S rRNA gene sequence showed that strain CL-ES53T formed a robust cluster with S. shabanensis E1L3A T. Although the 16S rRNA gene sequence similarity between strain CL-ES53T and S. shabanensis E1L3A T was rather high (96.9 %), DNA–DNA relatedness between these strains was 12 %, suggesting that they represent genomically distinct species. Strain CL-ES53T was differentiated from S. shabanensis E1L3A T and S. hydrothermalis EPR70T on the basis of optimum temperature for growth and certain phenotypic characteristics. The phylogenetic analysis and physiological and chemotaxonomic data show that strain CL-ES53T should be classified in the genus Salinisphaera within a novel species, for which the name Salinisphaera dokdonensis sp. nov. is proposed. The type strain is CL-ES53T (=KCCM 90064T =DSM 19549T).


2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1895-1901 ◽  
Author(s):  
Helena Lucena-Padrós ◽  
Juan M. González ◽  
Belén Caballero-Guerrero ◽  
José Luis Ruiz-Barba ◽  
Antonio Maldonado-Barragán

Three isolates originating from Spanish-style green-olive fermentations in a manufacturing company in the province of Seville, Spain, were taxonomically characterized by a polyphasic approach. This included a phylogenetic analysis based on 16S rRNA gene sequences and multi-locus sequence analysis (MLSA) based on pyrH, recA, rpoA, gyrB and mreB genes. The isolates shared 98.0 % 16S rRNA gene sequence similarity with Vibrio xiamenensis G21T. Phylogenetic analysis based on 16S rRNA gene sequences using the neighbour-joining and maximum-likelihood methods showed that the isolates fell within the genus Vibrio and formed an independent branch close to V. xiamenensis G21T. The maximum-parsimony method grouped the isolates to V. xiamenensis G21T but forming two clearly separated branches. Phylogenetic trees based on individual pyrH, recA, rpoA, gyrB and mreB gene sequences revealed that strain IGJ1.11T formed a clade alone or with V. xiamenensis G21T. Sequence similarities of the pyrH, recA, rpoA, gyrB and mreB genes between strain IGJ1.11T and V. xiamenensis G21T were 86.7, 85.7, 97.3, 87.6 and 84.8 %, respectively. MLSA of concatenated sequences showed that strain IGJ1.11T and V. xiamenensis G21T are two clearly separated species that form a clade, which we named Clade Xiamenensis, that presented 89.7 % concatenated gene sequence similarity, i.e. less than 92 %. The major cellular fatty acids (>5 %) of strain IGJ1.11T were summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), C16 : 0 and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c). Enzymic activity profiles, sugar fermentation patterns and DNA G+C content (52.9 mol%) differentiated the novel strains from the closest related members of the genus Vibrio. The name Vibrio olivae sp. nov. is proposed for the novel species. The type strain is IGJ1.11T ( = CECT 8064T = DSM 25438T).


2007 ◽  
Vol 57 (3) ◽  
pp. 633-638 ◽  
Author(s):  
Zubair Aslam ◽  
Ju Hyoung Lim ◽  
Wan-Taek Im ◽  
Muhammad Yasir ◽  
Young Ryun Chung ◽  
...  

A novel, moderately halophilic, Gram-positive coccus, designated strain S2R53-5T, was isolated from jeotgal, a traditional Korean fermented seafood. The organism was strictly aerobic, non-motile, non-sporulating and catalase- and oxidase-positive. Strain S2R53-5T grew in the presence of 0.5–15 % (w/v) NaCl and at pH 6.5–11.0, with optimum growth at 5 % (w/v) NaCl and pH 7.0. The temperature range for growth was 20.0–30.0 °C, with an optimum temperature of 30 °C. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain S2R53-5T belongs to the family Staphylococcaceae and was most closely related to Salinicoccus roseus DSM 5351T (96.8 % gene sequence similarity), Salinicoccus hispanicus DSM 5352T (96.1 %), Salinicoccus alkaliphilus T8T (95.2 %) and Jeotgalicoccus halotolerans YKJ-101T (95.1 %). The genomic DNA G+C content was 47.0 mol%, which is in the range of 46–51 mol% that is characteristic for the genus Salinicoccus. Levels of DNA–DNA relatedness between strain S2R53-5T and S. roseus DSM 5351T, S. hispanicus DSM 5352T and S. alkaliphilus KCTC 13928T were 32.2, 15.4 and 4.6 %, respectively. Chemotaxonomic data (major menaquinone, MK-6; major fatty acids, iso-C15 : 0 and anteiso-C15 : 0; cell-wall murein type, Lys and Gly) and 16S rRNA gene sequence analysis supported the affiliation of strain S2R53-5T with the genus Salinicoccus. The combined evidence from the low DNA–DNA relatedness, physiological, biochemical and other genotypic data indicate that strain S2R53-5T clearly represents a novel species of the genus Salinicoccus, for which the name Salinicoccus jeotgali sp. nov. is proposed. The type strain is S2R53-5T (=KCTC 13030T=LMG 23640T).


2010 ◽  
Vol 60 (12) ◽  
pp. 2951-2959 ◽  
Author(s):  
Timofey A. Pankratov ◽  
Svetlana N. Dedysh

Five strains of strictly aerobic, heterotrophic bacteria that form pink–red colonies and are capable of hydrolysing pectin, xylan, laminarin, lichenan and starch were isolated from acidic Sphagnum peat bogs and were designated OB1010T, LCBR1, TPB6011T, TPB6028T and TPO1014T. Cells of these isolates were Gram-negative, non-motile rods that produced an amorphous extracellular polysaccharide-like substance. Old cultures contained spherical bodies of varying sizes, which represent starvation forms. Cells of all five strains were acidophilic and psychrotolerant, capable of growth at pH 3.0–7.5 (optimum pH 3.8–4.5) and at 2–33 °C (optimum 15–22 °C). The major fatty acids were iso-C15 : 0, C16 : 0 and summed feature 3 (C16 : 1 ω7c and/or iso-C15 : 0 2-OH). The major menaquinone detected was MK-8. The pigments were carotenoids. The genomic DNA G+C contents were 57.3–59.3 mol%. The five isolates were found to be members of subdivision 1 of the phylum Acidobacteria and displayed 95.3–98.9 % 16S rRNA gene sequence similarity to each other. The closest described relatives to strains OB1010T, LCBR1, TPB6011T, TPB6028T, and TPO1014T were members of the genera Terriglobus (94.6–95.8 % 16S rRNA gene sequence similarity) and Edaphobacter (94.2–95.4 %). Based on differences in cell morphology, phenotypic characteristics and hydrolytic capabilities, we propose a novel genus, Granulicella gen. nov., containing four novel species, Granulicella paludicola sp. nov. with type strain OB1010T (=DSM 22464T =LMG 25275T) and strain LCBR1, Granulicella pectinivorans sp. nov. with type strain TPB6011T (=VKM B-2509T =DSM 21001T), Granulicella rosea sp. nov. with type strain TPO1014T (=DSM 18704T =ATCC BAA-1396T) and Granulicella aggregans sp. nov. with type strain TPB6028T (=LMG 25274T =VKM B-2571T).


2011 ◽  
Vol 61 (2) ◽  
pp. 417-421 ◽  
Author(s):  
Byoung-Jun Yoon ◽  
Han-Su You ◽  
Dong-Heon Lee ◽  
Duck-Chul Oh

A Gram-stain-negative, yellow-pigmented, rod-shaped, strictly aerobic, non-flagellated, non-gliding and oxidase- and catalase-positive bacterium, designated A6T, was isolated from a marine sponge, Halichondria oshoro, collected on the coast of Jeju Island, South Korea. Phylogenetic analysis based on the nearly complete 16S rRNA gene sequence revealed that strain A6T was a member of the family Flavobacteriaceae. The closest relatives were Aquimarina intermedia LMG 23204T, A. latercula ATCC 23177T, A. brevivitae SMK-19T and A. muelleri KMM 6020T, with which strain A6T shared 95.7, 95.1, 94.7 and 94.6 % 16S rRNA gene sequence similarity, respectively. The dominant fatty acids of strain A6T were iso-C15 : 0 (32.2 %), iso-C17 : 0 3-OH (20.0 %), iso-C15 : 0 3-OH (12.3 %), iso-C15 : 1 G (7.2 %) and summed feature 3 (comprising iso-C15 : 0 2-OH and/or C16 : 1 ω7c; 6.8 %). The DNA G+C content of strain A6T was 36.0 mol% and the major respiratory quinone was MK-6. On the basis of combined phenotypic and phylogenetic analyses, strain A6T represents a novel species of the genus Aquimarina, for which the name Aquimarina spongiae sp. nov. is proposed. The type strain is A6T (=KCTC 22663T =DSM 22623T).


2007 ◽  
Vol 57 (9) ◽  
pp. 2073-2078 ◽  
Author(s):  
Jennifer C. Ast ◽  
Ilse Cleenwerck ◽  
Katrien Engelbeen ◽  
Henryk Urbanczyk ◽  
Fabiano L. Thompson ◽  
...  

Six representatives of a luminous bacterium commonly found in association with deep, cold-dwelling marine fishes were isolated from the light organs and skin of different fish species. These bacteria were Gram-negative, catalase-positive, and weakly oxidase-positive or oxidase-negative. Morphologically, cells of these strains were coccoid or coccoid-rods, occurring singly or in pairs, and motile by means of polar flagellation. After growth on seawater-based agar medium at 22 °C for 18 h, colonies were small, round and white, with an intense cerulean blue luminescence. Analysis of 16S rRNA gene sequence similarity placed these bacteria in the genus Photobacterium. Phylogenetic analysis based on seven housekeeping gene sequences (16S rRNA gene, gapA, gyrB, pyrH, recA, rpoA and rpoD), seven gene sequences of the lux operon (luxC, luxD, luxA, luxB, luxF, luxE and luxG) and four gene sequences of the rib operon (ribE, ribB, ribH and ribA), resolved the six strains as members of the genus Photobacterium and as a clade distinct from other species of Photobacterium. These strains were most closely related to Photobacterium phosphoreum and Photobacterium iliopiscarium. DNA–DNA hybridization values between the designated type strain, Photobacterium kishitanii pjapo.1.1T, and P. phosphoreum LMG 4233T, P. iliopiscarium LMG 19543T and Photobacterium indicum LMG 22857T were 51, 43 and 19 %, respectively. In AFLP analysis, the six strains clustered together, forming a group distinct from other analysed species. The fatty acid C17 : 0 cyclo was present in these bacteria, but not in P. phosphoreum, P. iliopiscarium or P. indicum. A combination of biochemical tests (arginine dihydrolase and lysine decarboxylase) differentiates these strains from P. phosphoreum and P. indicum. The DNA G+C content of P. kishitanii pjapo.1.1T is 40.2 %, and the genome size is approximately 4.2 Mbp, in the form of two circular chromosomes. These strains represent a novel species, for which the name Photobacterium kishitanii sp. nov. is proposed. The type strain, pjapo.1.1T (=ATCC BAA-1194T=LMG 23890T), is a luminous symbiont isolated from the light organ of the deep-water fish Physiculus japonicus.


2013 ◽  
Vol 63 (Pt_5) ◽  
pp. 1584-1588 ◽  
Author(s):  
Shuhei Yabe ◽  
Yoshifumi Aiba ◽  
Yasuteru Sakai ◽  
Masaru Hazaka ◽  
Kazuyoshi Kawahara ◽  
...  

A Gram-negative bacterium, designated CKTN2T, was isolated from compost. Cells of strain CKTN2T were strictly aerobic rods. The isolate grew at 20–50 °C (optimum 40–45 °C), but not below 15 °C or above 52 °C, and at pH 5.9–8.8 (optimum pH 7.0), but not below pH 5.4 or above pH 9.3. The DNA G+C content was 40.3 mol%. The predominant menaquinone was MK-7. The major fatty acids were iso-C15 : 0 (45.2 %), iso-C17 : 0 3-OH (11.1 %) and C18 : 0 (14.5 %). Analysis of the 16S rRNA gene sequence of strain CKTN2T revealed that it is a member of the genus Sphingobacterium and is most closely related to Sphingobacterium alimentarium DSM 22362T (93.2 % 16S rRNA gene sequence similarity). Strain CKTN2T could be distinguished from its closest phylogenetic relatives by different phenotypic characteristics. According to the phenotypic and genotypic characteristics, strain CKTN2T represents a novel species of the genus Sphingobacterium , for which the name Sphingobacterium thermophilum sp. nov. is proposed. The type strain is CKTN2T ( = JCM 17858T  = KCTC 23708T).


Microbiology ◽  
2005 ◽  
Vol 151 (7) ◽  
pp. 2141-2150 ◽  
Author(s):  
Sabri M. Naser ◽  
Fabiano L. Thompson ◽  
Bart Hoste ◽  
Dirk Gevers ◽  
Peter Dawyndt ◽  
...  

The aim of this study was to evaluate the use of RNA polymerase α subunit (rpoA) and phenylalanyl-tRNA synthase (pheS) gene sequences as species identification tools for enterococci. Ninety-six representative strains comprising all currently recognized Enterococcus species were examined. rpoA gene sequences generated a robust classification into species groups similar to the one based on 16S rRNA gene sequence analysis. On the other hand, the pheS gene is a fast-evolving clock even better suited for species delineation than the rpoA gene, but not for recognition of species groups within Enterococcus as determined by both rpoA and 16S rRNA genes. All enterococcal species were clearly differentiated on the basis of their rpoA and pheS sequences. Evaluation of intraspecies variation showed that both rpoA and pheS genes have a high degree of homogeneity among strains of the same species. Strains of the same enterococcal species have at least 99 % rpoA and 97 % pheS gene sequence similarity, whereas, different enterococcal species have at maximum 97 % rpoA and 86 % pheS gene sequence similarity. It was concluded that both genes can be used as reliable tools for identification of clinical and environmental species of Enterococcus and are efficient screening methods for the detection of novel species. The sequence data obtained in this study were compared to the available atpA and 16S rRNA gene sequences. The MLSA approach to Enterococcus taxonomy provides portable, highly reproducible data with lower costs for rapid identification of all enterococcal species.


Sign in / Sign up

Export Citation Format

Share Document