scholarly journals Perexilibacter aurantiacus gen. nov., sp. nov., a novel member of the family ‘Flammeovirgaceae’ isolated from sediment

2007 ◽  
Vol 57 (5) ◽  
pp. 964-968 ◽  
Author(s):  
Jaewoo Yoon ◽  
Shu Ishikawa ◽  
Hiroaki Kasai ◽  
Akira Yokota

A strictly aerobic, Gram-negative, gliding, dull-orange-pigmented, rod-shaped bacterium, designated strain Shu-F-UV2-2T, was isolated from sediment (Carp Island, Republic of Palau) and was the focus of a polyphasic taxonomic study. Phylogenetic analyses based on the 16S rRNA gene sequence revealed that the novel isolate was affiliated to the family ‘Flammeovirgaceae’ of the phylum Bacteroidetes and that it showed highest sequence similarity (85.5 %) to Flammeovirga yaeyamensis NBRC 100898T. The novel isolate could be differentiated phenotypically and physiologically from recognized members of the family ‘Flammeovirgaceae’. The G+C content of the DNA was 43.0 mol%, MK-7 was the major menaquinone and iso-C15 : 0, C16 : 1 ω7c and C16 : 1 ω5c were the major fatty acids. On the basis of this polyphasic evidence, it was concluded that strain Shu-F-UV2-2T represents a novel species in a new genus of the family ‘Flammeovirgaceae’, for which the name Perexilibacter aurantiacus gen. nov., sp. nov. is proposed. The type strain is Shu-F-UV2-2T (=MBIC06993T=IAM 15413T=KCTC 12867T).

2011 ◽  
Vol 61 (10) ◽  
pp. 2342-2347 ◽  
Author(s):  
Jaewoo Yoon ◽  
Kyoko Adachi ◽  
Sanghwa Park ◽  
Hiroaki Kasai ◽  
Akira Yokota

Two aerobic, Gram-reaction-negative, golden-yellow pigmented and rod-shaped bacteria, designated strains A5Q-118T and A5Q-27, were isolated from an unidentified sea squirt that thrives in the coral reefs off the coast of Okinawa, Japan. Phylogenetic analyses based on the 16S rRNA gene sequence revealed that the novel isolates were affiliated with the family ‘Flammeovirgaceae’ of the phylum Bacteroidetes. Strains A5Q-118T and A5Q-27 shared 100 % sequence similarity with each other and showed <92 % similarity with other cultivated members of the family ‘Flammeovirgaceae’. The novel isolates were phenotypically and physiologically different from strains described previously. The DNA G+C content was 35.5–36.2 mol%, MK-7 was the major menaquinone and iso-C15 : 0 and C16 : 1ω5c were the major fatty acids. Based on the results of this polyphasic taxonomic study, it was concluded that strains A5Q-118T and A5Q-27 represent a novel species in a new genus of the family ‘Flammeovirgaceae’, for which the name Aureibacter tunicatorum gen. nov., sp. nov. is proposed. Proposal for designation of the Flammeovirgaceae fam. nov. is also presented. The type strain of Aureibacter tunicatorum is A5Q-118T ( = KCTC 23232T  = NBRC 107587T).


2007 ◽  
Vol 57 (5) ◽  
pp. 959-963 ◽  
Author(s):  
Jaewoo Yoon ◽  
Mina Yasumoto-Hirose ◽  
Atsuko Katsuta ◽  
Hiroshi Sekiguchi ◽  
Satoru Matsuda ◽  
...  

An obligately aerobic, Gram-negative, non-spore-forming, non-motile, spherical bacterium, designated strain 04OKA010-24T, was isolated from seawater surrounding the hard coral Galaxea fascicularis L., collected at Majanohama, Akajima, Japan, and was subjected to a polyphasic taxonomic study. Phylogenetic analyses based on the 16S rRNA gene sequence indicated that the new strain represented a member of the phylum ‘Verrucomicrobia’ and shared 84–95 % sequence similarity with cultivated strains of ‘Verrucomicrobia’ subdivision 4. Amino acid analysis of the cell-wall hydrolysate indicated the absence of muramic acid and diaminopimelic acid, which suggested that the strain did not contain peptidoglycan in the cell wall. The G+C content of the DNA was 53.9 mol%. MK-7 was the major menaquinone and C14 : 0, C18 : 1 ω9c and C18 : 0 were the major fatty acids. On the basis of these data, it was concluded that strain 04OKA010-24T represents a novel species in a new genus in subdivision 4 of the phylum ‘Verrucomicrobia’, for which the name Coraliomargarita akajimensis gen. nov., sp. nov. is proposed. The type strain of Coraliomargarita akajimensis is 04OKA010-24T (=MBIC06463T=IAM 15411T=KCTC 12865T).


2007 ◽  
Vol 57 (2) ◽  
pp. 270-275 ◽  
Author(s):  
Dong H. Choi ◽  
Jang-Cheon Cho ◽  
Brian D. Lanoil ◽  
Stephen J. Giovannoni ◽  
Byung C. Cho

Two strictly aerobic, Gram-negative bacteria, designated strains CL-SP27T and B5-6T, were isolated from the hypersaline water of a solar saltern in Korea and from the surface water of the Sargasso Sea, respectively. The two strains were rod-shaped, non-motile and grew on marine agar 2216 as beige colonies. Phylogenetic analyses of 16S rRNA gene sequences revealed a clear affiliation of the novel strains to the family Rhodobacteraceae. However, the novel strains were only distantly related to members of the Roseobacter clade, forming a distinct lineage. Although the 16S rRNA gene sequence similarity between strains CL-SP27T and B5-6T was very high (99.6 %), DNA–DNA relatedness between the strains was 48.4 %, suggesting that the strains be categorized as two genospecies. Additionally, the two novel strains could be differentiated by DNA G+C contents, fatty acid profiles, carbon source utilization patterns, antibiotic susceptibilities and biochemical characteristics. Based on taxonomic data obtained in this study, strains CL-SP27T and B5-6T represent separate species within a novel genus of the family Rhodobacteraceae, for which the names Maribius salinus gen. nov., sp. nov. (type species) and Maribius pelagius sp. nov. are proposed. The type strains of Maribius salinus and Maribius pelagius are CL-SP27T (=KCCM 42113T=JCM 13037T) and B5-6T (=KCCM 42336T=JCM 14009T), respectively.


2012 ◽  
Vol 62 (Pt_3) ◽  
pp. 591-595 ◽  
Author(s):  
Sang-Hee Lee ◽  
Qing-Mei Liu ◽  
Sung-Taik Lee ◽  
Sun-Chang Kim ◽  
Wan-Taek Im

A Gram-reaction-positive, rod-shaped, non-motile, non-spore-forming bacterium (strain BX5-10T) was isolated from the soil of a ginseng field on Baekdu Mountain in Jilin district, China. The taxonomic position of this bacterium was determined in an investigation based on a polyphasic approach. On the basis of 16S rRNA gene sequence analysis, strain BX5-10T was shown to belong to the family Nocardioidaceae and to be most closely related to Nocardioides plantarum NCIMB 12834T (96.5 % sequence similarity), Nocardioides dokdonensis KCTC 19309T (96.2 %) and Nocardioides fonticola NAA-13T (95.1 %). Strain BX5-10T was characterized chemotaxonomically as having ll-2,6-diaminopimelic acid in its cell-wall peptidoglycan, MK-8(H4) as the predominant menaquinone and C18 : 1ω9c, C16 : 0 and C17 : 1ω8c as its major fatty acids. The G+C content of the genomic DNA was 70.3 mol%. The novel strain could be differentiated genotypically and phenotypically from all recognized species of the genus Nocardioides. Based on the results of the phylogenetic analyses and the genotypic and phenotypic data, a novel species, Nocardioides ginsengagri sp. nov., is proposed. The type strain is BX5-10T ( = KCTC 19467T = DSM 21362T).


2007 ◽  
Vol 57 (11) ◽  
pp. 2595-2599 ◽  
Author(s):  
Kiyoung Lee ◽  
Hong Kum Lee ◽  
Tae-Hwan Choi ◽  
Jang-Cheon Cho

A seawater bacterium, designated IMCC3195T, was isolated from the Antarctic coast. Cells of the novel strain were Gram-negative, rusty-coloured, strictly aerobic, chemoheterotrophic, non-budding and non-motile rods or vibrioids that possessed a thin prostheca. Based on 16S rRNA gene sequence comparisons, the novel strain was most closely related to the genera Hyphomonas (89.4–90.9 %), Maricaulis (90.1–90.4 %), Hirschia (89.0 %) and Oceanicaulis (87.9 %) of the family Hyphomonadaceae. Phylogenetic analyses also showed the Antarctic isolate to be only distantly related to the genera of stalked bacteria of marine origin in the family Hyphomonadaceae. The DNA G+C content of the novel strain was 60.3 mol% and the predominant cellular fatty acids were C18 : 1 ω7c (41.9 %), C17 : 1 ω8c (21.4 %) and C17 : 0 (14.3 %). The major quinone was Q-10. Several phenotypic and chemotaxonomic characteristics, including optimum temperature and salinity range for growth, cell morphology, pigmentation and fatty acid content, differentiated the novel strain from other related genera in the family Hyphomonadaceae. From the taxonomic evidence collected in this study, it is suggested that strain IMCC3195T (=KCCM 42687T=NBRC 103098T) represents a new genus and novel species in the family Hyphomonadaceae, for which the name Robiginitomaculum antarcticum gen. nov., sp. nov. is proposed.


2010 ◽  
Vol 60 (11) ◽  
pp. 2513-2516 ◽  
Author(s):  
Hiroaki Minegishi ◽  
Akinobu Echigo ◽  
Shuhei Nagaoka ◽  
Masahiro Kamekura ◽  
Ron Usami

A novel halophilic archaeon, strain MH1-52-1T, was isolated from solar salt imported from Australia. Cells were pleomorphic, non-motile and Gram-negative. Strain MH1-52-1T required at least 3.0 M NaCl and 1 mM Mg2+ for growth. Strain MH1-52-1T was able to grow at pH 4.0–6.0 (optimum, pH 4.4–4.5) and 15–45 °C (optimum, 37 °C). The diether phospholipids phosphatidylglycerol and phosphatidylglycerol phosphate methyl ester, derived from both C20C20 and C20C25 archaeol, were present. Four unidentified glycolipids were also detected. The 16S rRNA gene sequence showed the highest similarity to that of Halobacterium noricense A1T (91.7 %); there were lower levels of similarity to other members of the family Halobacteriaceae. The G+C content of its DNA was 61.4 mol%. Based on our phenotypic, genotypic and phylogenetic analyses, it is proposed that the isolate should be classified as a representative of a new genus and species, for which the name Halarchaeum acidiphilum gen. nov., sp. nov. is proposed. The type strain of Halarchaeum acidiphilum is MH1-52-1T (=JCM 16109T =DSM 22442T =CECT 7534T).


2014 ◽  
Vol 64 (Pt_2) ◽  
pp. 469-474 ◽  
Author(s):  
Ying Liu ◽  
Liang-Zi Liu ◽  
Hong-Can Liu ◽  
Yu-Guang Zhou ◽  
Fang-Jun Qi ◽  
...  

A Gram-stain-negative, strictly aerobic and heterotrophic bacterial strain, designed strain D1T, was isolated from a recirculating mariculture system in Tianjin, China. Its taxonomic position was determined using a polyphasic approach. Cells of strain D1T were non-flagellated short rods, 0.3–0.5 µm wide and 0.5–1.0 µm long. Growth was observed at 15–30 °C (optimum, 25 °C), at pH 5.5–9.0 (optimum, pH 6.5–7.0) and in the presence of 1–8 % (w/v) NaCl (optimum, 2–3 %). Cells contained carotenoid pigments but not flexirubin-type pigments. Strain D1T contained MK-6 as the sole menaquinone and phosphatidylethanolamine (PE) as the sole phospholipid and four unidentified lipids. The major cellular fatty acids (>10 %) were iso-C15 : 0 (23.2 %), iso-C17 : 0 3-OH (15.2 %), C16 : 1ω7c/C16 : 1ω6c (14.3 %), iso-C15 : 0 3-OH (13.5 %) and iso-C15 : 1 G (10.8 %). 16S rRNA gene sequence analyses indicated that strain D1T belonged to the family Flavobacteriaceae and showed closest phylogenetic relationship to the genus Lutibacter , with highest sequence similarity to Lutibacter aestuarii MA-My1T (92.2 %). The DNA G+C content of strain D1T was 35.9 mol%. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain D1T was considered to represent a novel species in a new genus of the family Flavobacteriaceae , for which the name Wenyingzhuangia marina gen. nov., sp. nov. is proposed. The type strain of the type species is D1T ( = CGMCC 1.12162T = JCM 18494T).


2007 ◽  
Vol 57 (5) ◽  
pp. 1014-1017 ◽  
Author(s):  
Jaewoo Yoon ◽  
Shu Ishikawa ◽  
Hiroaki Kasai ◽  
Akira Yokota

An obligately aerobic, Gram-negative, non-motile, pale-pink-pigmented, rod-shaped strain, designated Shu-9-SY12-35CT, was isolated from seawater in Jodogahama, Iwate, Japan, and was subjected to a polyphasic taxonomic examination. Phylogenetic analyses based on the 16S rRNA gene sequence revealed that the novel isolate was affiliated with the family ‘Flexibacteraceae’ of the phylum Bacteroidetes and that it showed highest sequence similarity (86.4 %) with Dyadobacter hamtensis HHS 11T. The novel isolate is phenotypically and physiologically different from strains described previously. The G+C content of the DNA was 56.3 mol%, MK-7 was the major menaquinone and iso-C15 : 0, C16 : 1 ω7c and iso-C17 : 0 3-OH were the major fatty acids. On the basis of polyphasic taxonomic studies, it was concluded that strain Shu-9-SY12-35CT represents a new genus and species of the family ‘Flexibacteraceae’, for which the name Persicitalea jodogahamensis gen. nov., sp. nov. is proposed. The type strain of Persicitalea jodogahamensis is Shu-9-SY12-35CT (=MBIC07417T=IAM 15412T=KCTC 12866T).


2011 ◽  
Vol 61 (8) ◽  
pp. 1899-1905 ◽  
Author(s):  
Tristan Barbeyron ◽  
Yannick Lerat ◽  
Jean-François Sassi ◽  
Sophie Le Panse ◽  
William Helbert ◽  
...  

A rod shaped, Gram-stain-negative, chemo-organotrophic, heterotrophic, strictly aerobic, non-gliding bacterium, designated strain PLRT, was isolated from faeces of the mollusc Aplysia punctata (Mollusca, Gastropoda) that had been fed with green algae belonging to the genus Ulva. The novel strain was able to degrade ulvan, a polysaccharide extracted from green algae (Chlorophyta, Ulvophyceae). The taxonomic position of strain PLRT was investigated by using a polyphasic approach. Strain PLRT was dark orange, oxidase-positive, catalase-positive and grew optimally at 25 °C, at pH 7.5 and in the presence of 2.5 % (w/v) NaCl with an oxidative metabolism using oxygen as the electron acceptor. Nitrate could not be used as the electron acceptor. Strain PLRT had a Chargaff’s coefficient (DNA G+C content) of 35.3 mol%. Phylogenetic analysis based on the sequence of the 16S rRNA gene placed the novel strain in the family Flavobacteriaceae (phylum ‘Bacteroidetes’), within a clade comprising Stenothermobacter spongiae, Nonlabens tegetincola, Sandarakinotalea sediminis, Persicivirga xylanidelens and Persicivirga dokdonensis. The closest neighbours of strain PLRT were P. xylanidelens and P. dokdonensis, sharing 95.2 and 95.5 % 16S rRNA gene sequence similarity, respectively. Phylogenetic inference and differential phenotypic characteristics demonstrated that strain PLRT represents a novel species of the genus Persicivirga, for which the name Persicivirga ulvanivorans sp. nov. is proposed. The type strain is PLRT ( = CIP 110082T = DSM 22727T).


2011 ◽  
Vol 61 (11) ◽  
pp. 2734-2739 ◽  
Author(s):  
Chae-Sung Lim ◽  
Yong-Sik Oh ◽  
Jae-Kwan Lee ◽  
A-Rum Park ◽  
Jae-Soo Yoo ◽  
...  

A yellow-pigmented, Gram-staining-negative, non-motile, strictly aerobic and rod-shaped bacterium, designated CS100T, was isolated from soil in Chungbuk, Korea. Phylogenetic analysis and comparative studies based on the 16S rRNA gene sequence showed that strain CS100T belonged to the genus Flavobacterium in the family Flavobacteriaceae. Strain CS100T showed the highest sequence similarities to Flavobacterium glaciei JCM 13953T (97.6 %) and Flavobacterium johnsoniae KACC 11410T (97.1 %). Sequence similarity to other members of the genus Flavobacterium was 91.5–97.0 %. Growth occurred at 4–30 °C, at pH 5.0–9.0 and in the presence of 0–2 % (w/v) NaCl. Flexirubin-type pigments were produced. Menaquinone-6 (MK-6) was the major respiratory quinone and the major fatty acids were iso-C15 : 0 (17.3 %), summed feature 3 (comprising iso-C15 : 0 2-OH and/or C16 : 1ω7c, 15.5 %) and C16 : 0 (11.8 %). The DNA G+C content was 36.4 mol%. Strain CS100T hydrolysed skimmed milk and gelatin, but not chitin or pectin, and showed oxidase and catalase activities. DNA–DNA relatedness was 3.0 % with F. glaciei JCM 13953T and 11.5 % with F. johnsoniae KACC 11410T. On the basis of the evidence from this study, strain CS100T represents a novel species of the genus Flavobacterium, for which the name Flavobacterium chungbukense sp. nov. is proposed. The type strain is CS100T ( = KACC 15048T = JCM 17386T).


Sign in / Sign up

Export Citation Format

Share Document