scholarly journals Algibacter mikhailovii sp. nov., a novel marine bacterium of the family Flavobacteriaceae, and emended description of the genus Algibacter

2007 ◽  
Vol 57 (9) ◽  
pp. 2147-2150 ◽  
Author(s):  
Olga I. Nedashkovskaya ◽  
Marc Vancanneyt ◽  
Seung Bum Kim ◽  
Bart Hoste ◽  
Kyung Sook Bae

A novel marine bacterium, designated strain KMM 6171T, was subjected to taxonomic analysis by using a polyphasic approach. Colonies were yellow-pigmented and cells were Gram-negative, heterotrophic rods displaying slow gliding motility. 16S rRNA gene sequence analysis indicated that strain KMM 6171T was closely related to the genus Algibacter, a member of the family Flavobacteriaceae, with sequence similarity of 96.7–96.8 %. The predominant cellular fatty acids were iso-C15 : 1, iso-C15 : 0, anteiso-C15 : 0, C15 : 0, iso-C15 : 0 3-OH, iso-C17 : 0 3-OH and summed feature 3, comprising C16 : 1ω7c and/or iso-C15 : 0 2-OH. The DNA G+C content was 35.1 mol%. On the basis of the phenotypic, genotypic, chemotaxonomic and phylogenetic data, strain KMM 6171T represents a novel species of the genus Algibacter, for which the name Algibacter mikhailovii sp. nov. is proposed. The type strain is KMM 6171T (=KCTC 12710T=LMG 23988T). An emended description of the genus Algibacter based on the new data is also given.

2010 ◽  
Vol 60 (11) ◽  
pp. 2577-2582 ◽  
Author(s):  
Myungjin Lee ◽  
Sung-Geun Woo ◽  
Joonhong Park ◽  
Soon-Ae Yoo

A Gram-negative, non-motile, aerobic bacterial strain, designated MJ20T, was isolated from farm soil near Daejeon (South Korea) and was characterized taxonomically by using a polyphasic approach. Comparative 16S rRNA gene sequence analysis showed that strain MJ20T belongs to the family Cytophagaceae, class Sphingobacteria, and was related most closely to Dyadobacter fermentans DSM 18053T (98.9 % sequence similarity), Dyadobacter beijingensis JCM 14200T (98.0 %) and Dyadobacter ginsengisoli KCTC 12589T (96.4 %). The G+C content of the genomic DNA of strain MJ20T was 48.5 mol%. The detection of MK-7 as the predominant menaquinone and a fatty acid profile with summed feature 4 (C16 : 1 ω7c and/or iso-C15 : 0 2-OH), iso-C15 : 0, C16 : 0 and C16 : 1 ω5c as major components supported the affiliation of strain MJ20T to the genus Dyadobacter. The new isolate exhibited relatively low levels of DNA–DNA relatedness with respect to D. fermentans DSM 18053T (mean±sd of three determinations, 47±7 %) and D. beijingensis JCM 14200T (38±8 %). On the basis of its phenotypic and genotypic properties together with phylogenetic distinctiveness, strain MJ20T (=KCTC 22481T =JCM 16232T) should be classified in the genus Dyadobacter as the type strain of a novel species, for which the name Dyadobacter soli sp. nov. is proposed.


2006 ◽  
Vol 56 (10) ◽  
pp. 2271-2275 ◽  
Author(s):  
Ken W. K. Lau ◽  
Jianping Ren ◽  
Natalie L. M. Wai ◽  
Simon C. L. Lau ◽  
Pei-Yuan Qian ◽  
...  

A Gram-negative, aerobic, halophilic, neutrophilic, rod-shaped, non-pigmented, polar-flagellated bacterium, UST010306-043T, was isolated from a pearl-oyster culture pond in Sanya, Hainan Province, China in January 2001. This marine bacterium had an optimum temperature for growth of between 33 and 37 °C. On the basis of 16S rRNA gene sequence analysis, the strain was closely related to Marinomonas aquimarina and Marinomonas communis, with 97.5–97.7 and 97.1 % sequence similarity, respectively. Levels of DNA–DNA relatedness to the type strains of these species were well below 70 %. Analyses of phylogenetic, phenotypic and chemotaxomonic characteristics showed that strain UST010306-043T was distinct from currently established Marinomonas species. A novel species with the name Marinomonas ostreistagni sp. nov. is proposed to accommodate this bacterium, with strain UST010306-043T (=JCM 13672T=NRRL B-41433T) as the type strain.


2006 ◽  
Vol 56 (9) ◽  
pp. 2031-2036 ◽  
Author(s):  
Kyoung-Ho Kim ◽  
Leonid N. Ten ◽  
Qing-Mei Liu ◽  
Wan-Taek Im ◽  
Sung-Taik Lee

A Gram-negative, strictly aerobic, rod-shaped, non-motile, non-spore-forming bacterial strain, designated TR6-04T, was isolated from compost and characterized taxonomically by using a polyphasic approach. The organism grew optimally at 30 °C and at pH 6.5–7.0. The isolate was positive for catalase and oxidase tests but negative for gelatinase, indole and H2S production. Comparative 16S rRNA gene sequence analysis showed that strain TR6-04T fell within the radiation of the cluster comprising Sphingobacterium species and clustered with Sphingobacterium mizutaii ATCC 33299T (96.7 % sequence similarity); the similarity to sequences of other species within the family Sphingobacteriaceae was less than 92.0 %. The G+C content of the genomic DNA was 38.7 mol%. The predominant respiratory quinone was MK-7. The major fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 4 (iso-C15 : 0 2-OH and/or C16 : 1 ω7c). These chemotaxonomic data supported the affiliation of strain TR6-04T to the genus Sphingobacterium. However, on the basis of its phenotypic properties and phylogenetic distinctiveness, strain TR6-04T (=KCTC 12579T=LMG 23402T=CCUG 52468T) should be classified as the type strain of a novel species, for which the name Sphingobacterium daejeonense sp. nov. is proposed.


2010 ◽  
Vol 60 (10) ◽  
pp. 2358-2363 ◽  
Author(s):  
Sathiyaraj Srinivasan ◽  
Myung Kyum Kim ◽  
Gayathri Sathiyaraj ◽  
Vaidyanathan Veena ◽  
Muthusamy Mahalakshmi ◽  
...  

A Gram-negative, rod-shaped, motile bacterium was isolated from the soil of a ginseng field in Daejeon, South Korea, and characterized in order to determine its taxonomic position. Phylogenetic analysis based on 16S rRNA gene sequence analysis revealed that strain DCY34T belonged to the family Sphingomonadaceae, and the highest degree of sequence similarity was found with Sphingopyxis witflariensis W-50T (97.1 %), Sphingopyxis ginsengisoli Gsoil 250T (97.0 %), Sphingopyxis chilensis S37T (96.9 %), Sphingopyxis macrogoltabida IFO 15033T (96.8 %), Sphingopyxis alaskensis RB2256T (96.7 %) and Sphingopyxis taejonensis JSS54T (96.7 %). Chemotaxonomic data revealed that strain DCY34T possessed ubiquinone Q-10 as the predominant respiratory lipoquinone, which is common to members of the genus Sphingopyxis. The predominant fatty acids were C18 : 1 ω7c (27.5 %), summed feature 4 (C16 : 1 ω7c and/or C15 : 0 iso 2-OH; 18.6 %), C16 : 0 (15.6 %) and summed feature 8 (C19 : 1 ω6c and/or unknown 18.864; 15.4 %). The major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, sphingoglycolipid and an unknown polar lipid. The results of physiological and biochemical tests clearly demonstrated that strain DCY34T represented a separate species and supported its affiliation to the genus Sphingopyxis. Based on these data, the new isolate represents a novel species, for which the name Sphingopyxis panaciterrulae sp. nov. is proposed. The type strain is DCY34T (=KCTC 22112T=JCM 14844T).


2011 ◽  
Vol 61 (4) ◽  
pp. 938-941 ◽  
Author(s):  
Sung-Heun Cho ◽  
Song-Hee Chae ◽  
Wan-Taek Im ◽  
Seung Bum Kim

A Gram-negative, aerobic, non-motile, yellow-pigmented, rod-shaped bacterium (strain JS-08T) isolated from seawater was subjected to a polyphasic taxonomic study. 16S rRNA gene sequence analysis indicated that strain JS-08T belongs to the genus Myroides, a member of the phylum Bacteroidetes. Its closest phylogenetic relative was Myroides odoratimimus JCM 7460T, with which it shared 97.0 % 16S RNA gene sequence similarity. Strain JS-08T contained menaquinone-6 (MK-6) as the predominant menaquinone, and the dominant fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH and a summed feature consisting of iso-C15 : 0 2-OH and/or C16 : 1ω7c. The DNA G+C content of strain JS-08T was 34.2 mol%. Based on phenotypic, genotypic and phylogenetic evidence, it is suggested that strain JS-08T represents a novel species of the genus Myroides, for which the name Myroides marinus sp. nov. is proposed. The type strain is JS-08T ( = KCTC 23023T  = JCM 16529T).


2011 ◽  
Vol 61 (10) ◽  
pp. 2445-2449 ◽  
Author(s):  
Hana Yi ◽  
Jongsik Chun

An orange-coloured, rod-shaped, non-motile, Gram-reaction-negative, strictly aerobic bacterial strain, designated JC2680T, was isolated from a seawater sample of Jeju Island, Korea. The isolate required sea salts for growth. Flexirubin-type pigments were absent. 16S rRNA gene sequence analysis indicated that the test strain belonged to the genus Aquimarina within the family Flavobacteriaceae, but shared relatively low levels of similarity (93.6–95.9 %) with the type strains of recognized Aquimarina species. The predominant cellular fatty acids [iso-C17 : 0 3-OH, iso-C15 : 0 and summed feature 9 (comprising 10-methyl C16 : 0 and/or iso-C17 : 1ω9c) and DNA G+C content (35 mol%) were consistent with the assignment of strain JC2680T to the genus Aquimarina. However, a number of phenotypic characteristics, namely inability to grow under microaerophilic conditions, differences in enzyme reactions, and absence of flexirubin-type pigments and gliding motility, clearly distinguished strain JC2680T from recognized species of the genus Aquimarina. The data presented thus indicate that strain JC2680T represents a novel species of the genus Aquimarina, for which the name Aquimarina addita sp. nov. is proposed. The type strain is JC2680T ( = KACC 14156T  = JCM 17106T).


2011 ◽  
Vol 61 (11) ◽  
pp. 2690-2696 ◽  
Author(s):  
Sung-Geun Woo ◽  
Leonid N. Ten ◽  
Joonhong Park ◽  
Myungjin Lee

A Gram-reaction-negative, non-spore-forming, rod-shaped, aerobic bacterial strain, designated MJ11T, was isolated from sludge of a leachate treatment plant in Daejeon, South Korea, and was characterized taxonomically by using a polyphasic approach. Comparative 16S rRNA gene sequence analysis showed that strain MJ11T belonged to the family Brucellaceae, class Alphaproteobacteria, and was most closely related to Ochrobactrum ciceri Ca-34T (97.9 % sequence similarity) and Ochrobactrum pituitosum CCUG 50899T (96.4 %). Comparative sequence analyses of the additional phylogenetic marker genes dnaK, groEL and gyrB confirmed the affiliation of strain MJ11T to the genus Ochrobactrum. The G+C content of the genomic DNA of strain MJ11T was 59.3 mol%. The detection of a quinone system with ubiquinone Q-10 as the predominant respiratory lipoquinone, a fatty acid profile with C18 : 1ω7c (62.6 %) and C19 : 0 cyclo ω8c (14.2 %) as the major components, a polar lipid profile with phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, phosphatidylmonomethylethanolamine, diphosphatidylglycerol and unknown aminolipids AL1 and AL2 as major polar lipids and spermidine and putrescine as the predominant polyamines also supported the affiliation of strain MJ11T to the genus Ochrobactrum. The DNA–DNA relatedness between strain MJ11T and Ochrobactrum ciceri DSM 22292T was 29±7 %, clearly showing that the isolate constitutes a new genospecies. Strain MJ11T could be clearly differentiated from its closest neighbours on the basis of its phenotypic, genotypic and chemotaxonomic features. Therefore, strain MJ11T represents a novel species of the genus Ochrobactrum, for which the name Ochrobactrum daejeonense sp. nov. is proposed. The type strain is MJ11T ( = KCTC 22458T  = JCM 16234T).


2006 ◽  
Vol 56 (8) ◽  
pp. 1831-1836 ◽  
Author(s):  
Chung Yeon Hwang ◽  
Dong Han Choi ◽  
Byung Cheol Cho

A Gram-negative, pink-coloured, rod-shaped, non-flagellated bacterium, designated CL-GP80T, was isolated from a hypertrophic pond located within the campus of Seoul National University, Korea. Analysis of its 16S rRNA gene sequence revealed that strain CL-GP80T belongs to the family Sphingobacteriaceae and is closely related to Pedobacter heparinus ATCC 13125T (95.8 % sequence similarity) and to other members of the genus Pedobacter (90.8–95.3 % similarity). Temperature and pH ranges for growth were 5–33 °C and pH 6–8, respectively. The DNA G+C content was 41.3 mol%. The major fatty acids were iso-C15 : 0 (37.0 %), iso-C15 : 0 2-OH and/or C16 : 1 ω7c (24.5 %), and iso-C17 : 0 3-OH (11.3 %). Phenotypic, chemotaxonomic and phylogenetic analyses indicated that strain CL-GP80T could be assigned to the genus Pedobacter, but distinguished from recognized species of the genus. Strain CL-GP80T (=KCCM 42272T=JCM 13399T) is therefore proposed as the type strain of a novel species, for which the name Pedobacter roseus sp. nov. is proposed.


2011 ◽  
Vol 61 (1) ◽  
pp. 155-159 ◽  
Author(s):  
Sun-Jung Kim ◽  
Sang-Seob Lee

A Gram-positive, non-motile bacterium, designated KSL51201-037T, was isolated from Anyang stream, Republic of Korea, and was characterized using a polyphasic taxonomic approach. Comparative 16S rRNA gene sequence analysis showed that strain KSL51201-037T belonged to the family Microbacteriaceae of the class Actinobacteria and exhibited 96.9 % gene sequence similarity to Labedella gwakjiensis KSW2-17T, 96.0 % to Leifsonia ginsengi wged11T and 95.9 % to Microterricola viridarii KV-677T. The G+C content of the genomic DNA was 72.7 mol%. Strain KSL51201-037T had l-2,4-diaminobutyric acid as the diagnostic cell-wall diamino acid, MK-11 and MK-12 as the major menaquinones, anteiso-C15 : 0 (47.8 %) and iso-C16 : 0 (24.0 %) as the major fatty acids and phosphatidylglycerol and three unknown phospholipids as the major polar lipids. On the basis of phenotypic and genotypic properties and phylogenetic distinctiveness, it is suggested that strain KSL51201-037T represents a novel species of a new genus in the family Microbacteriaceae for which the name Amnibacterium kyonggiense gen. nov., sp. nov. is proposed. The type strain of the type species is KSL51201-037T (=KEMC 51201-037T=JCM 16463T).


2011 ◽  
Vol 61 (6) ◽  
pp. 1425-1429 ◽  
Author(s):  
Young Sun Lee ◽  
Dong-Heon Lee ◽  
Hyung-Yeel Kahng ◽  
San Ho Sohn ◽  
Jae Sung Jung

A strictly aerobic, orange-pigmented and Gram-staining-negative bacterium, designated K17-16T, was isolated from seawater of Gangjin Bay, Korea. Comparative 16S rRNA gene sequence analysis revealed that strain K17-16T was a member of the genus Polaribacter in the family Flavobacteriaceae and showed 94.0–95.6 % sequence similarity with the type strains of recognized species of the genus Polaribacter. The G+C content of the genomic DNA was 34.6 mol% and the major respiratory lipoquinone was MK-6. The major polar lipids detected were phosphatidylethanolamine, three unidentified amino-group-containing lipids and an unidentified aminophospholipid. The predominant cellular fatty acids were iso-C15 : 0 (15.4 %), C15 : 0 (12.4 %), summed feature 3 (comprising iso-C15 : 0 2-OH and/or C16 : 1ω7c; 10.6 %), C15 : 1ω6c (9.8 %) and iso-C15 : 0 3-OH (8.6 %). On the basis of phenotypic and genotypic data, strain K17-16T represents a novel species in the genus Polaribacter, for which the name Polaribacter gangjinensis sp. nov. is proposed. The type strain is K17-16T ( = KCTC 22729T = JCM 16152T).


Sign in / Sign up

Export Citation Format

Share Document