scholarly journals Frischella japonica sp. nov., an anaerobic member of the Orbales in the Gammaproteobacteria, isolated from the gut of the eastern honey bee, Apis cerana japonica Fabricius

Author(s):  
Laura A. Wolter ◽  
Shota Suenami ◽  
Ryo Miyazaki

The gut of honey bees is characterized by a stable and relatively simple community of bacteria, consisting of seven to ten phylotypes. Two closely related honey bees, Apis mellifera (western honey bee) and Apis cerana (eastern honey bee), show a largely comparable occurrence of those phylotypes, but a distinct set of bacterial species and strains within each bee species. Here, we describe the isolation and characterization of Ac13T, a new species within the rare proteobacterial genus Frischella from A. cerana japonica Fabricius. Description of Ac13T as a new species is supported by low identity of the 16S rRNA gene sequence (97.2 %), of the average nucleotide identity based on orthologous genes (77.5 %) and digital DNA–DNA hybridization relatedness (24.7 %) to the next but far related type strain Frischella perrara PEB0191T, isolated from A. mellifera. Cells of Ac13T are mesophilic and have a mean length of 2–4 µm and a width of 0.5 µm. Optimal growth was achieved in anoxic conditions, whereas growth was not observed in oxic conditions and strongly reduced in microaerophilic environment. Strain Ac13T shares several features with other members of the Orbaceae , such as the major fatty acid profile, the respiratory quinone type and relatively low DNA G+C content, in accordance with its evolutionary relationship. Unlike F. perrara , strain Ac13T is susceptible to a broad range of antibiotics, which could be indicative for an antibiotic-free A. cerana bee keeping. In conclusion, we propose strain Ac13T as a novel species for which we propose the name Frischella japonica sp. nov. with the type strain Ac13T (=NCIMB 15259=JCM 34075).

Author(s):  
Nicole Hugouvieux-Cotte-Pattat ◽  
Cécile Jacot des-Combes ◽  
Jérôme Briolay ◽  
Leighton Pritchard

The Pectobacteriaceae family of important plant pathogens includes the genus Dickeya . There are currently 12 described species of Dickeya , although some are poorly characterized at the genomic level. Only two genomes of Dickeya paradisiaca , the type strain CFBP 4178T and strain Ech703, have previously been sequenced. Members of this species are mostly of tropical or subtropical origin. During an investigation of strains present in our laboratory collection we sequenced the atypical strain A3967, registered as CFBP 722, isolated from Solanum lycopersicum (tomato) in the South of France in 1965. The genome of strain A3967 shares digital DNA–DNA hybridization and average nucleotide identity (ANI) values of 68 and 96 %, respectively, with the D. paradisiaca type strain CFBP 4178T. However, ANI analysis showed that D. paradisiaca strains are significantly dissimilar to the other Dickeya species, such that less than one third of their genomes align to any other Dickeya genome. On phenotypic, phylogenetic and genomic grounds, we propose a reassignment of D. paradisiaca to the genus level, for which we propose the name Musicola gen. nov., with Musicola paradisiaca as the type species and CFBP 4178T (NCPPB 2511T) as the type strain. Phenotypic analysis showed differences between strain A3967T and CFBP 4178T, such as for the assimilation of melibiose, raffinose and myo-inositol. These results support the description of two novel species, namely Musicola paradisiaca comb. nov. and Musicola keenii sp. nov., with CFBP 4178T (NCPPB 2511T=LMG 2542T) and A3967T (CFBP 8732T=LMG 31880T) as the type strains, respectively.


Author(s):  
Eric A. Smith ◽  
Kirk E. Anderson ◽  
Vanessa Corby-Harris ◽  
Quinn S. McFrederick ◽  
Audrey J. Parish ◽  
...  

Honey bees are important pollinators of many major crops and add billions of dollars annually to the US economy through their services. Recent declines in the health of the honey bee have startled researchers and lay people alike as honey bees are agriculture’s most important pollinator. One factor that may influence colony health is the microbial community. Although honey bee worker guts have a characteristic community of bee-specific microbes, the honey bee queen digestive tracts are colonized predominantly by a single acetic acid bacterium tentatively named ‘Parasaccharibacter apium’. This bacterium is related to flower-associated microbes such as Saccharibacter floricola , and initial phylogenetic analyses placed it as sister to these environmental bacteria. We used a combination of phylogenetic and sequence identity methods to better resolve evolutionary relationships among ‘P. apium’, strains in the genus Saccharibacter , and strains in the closely related genus Bombella . Interestingly, measures of genome-wide average nucleotide identity and aligned fraction, coupled with phylogenetic placement, indicate that many strains labelled as ‘P. apium’ and Saccharibacter species are all the same species as Bombella apis . We propose reclassifying these strains as Bombella apis and outline the data supporting that classification below.


Author(s):  
Matan Shelomi ◽  
Wen-Ming Chen ◽  
Hsin-Kuang Chen ◽  
Hsin-Ying Lee ◽  
Chiu-Chung Young ◽  
...  

During an investigation of microbes associated with arthropods living in decaying coconut trees, a Pseudomonas isolate, Milli4T, was cultured from the digestive tract of the common Asian millipede, Trigoniulus corallinus. Sequence analysis of 16S rRNA and rpoB genes found that Milli4T was closely related but not identical to Pseudomonas panipatensis Esp-1T, Pseudomonas knackmussi B13T and Pseudomonas humi CCA1T. Whole genome sequencing suggested that this isolate represents a new species, with average nucleotide identity (OrthoANIu) values of around 83.9–87.7% with its closest relatives. Genome-to-genome distance calculations between Milli4T and its closest relatives also suggested they are distinct species. The genomic DNA G+C content of Milli4T was approximately 65.0 mol%. Phenotypic and chemotaxonomic characterization and fatty acid methyl ester analysis was performed on Milli4T and its related type strains. Based on these data, the new species Pseudomonas schmalbachii sp. nov. is proposed, and the type strain is Milli4T (=BCRC 81294T=JCM 34414T=CIP 111980T).


Author(s):  
Pattaraporn Yukphan ◽  
Piyanat Charoenyingcharoen ◽  
Yutthana Kingcha ◽  
Somsak Likhitrattanapisal ◽  
Supattra Muangham ◽  
...  

Two isolates, MS16-SU-2T and MS18-SU-3, obtained from fermented mangosteen peel in vinegar were suggested to constitute a new species assignable to the genus Acetobacter based on the results of 16S rRNA gene sequencing. The two isolates showed the highest sequence similarity (98.58%) to Acetobacter tropicalis NBRC 16470T and Acetobacter senegalensis LMG 23690T. However, the calculated similarity values were lower than the threshold for species demarcation. The phylogenetic analysis showed that the branches of the two isolates were separated from other Acetobacter species, and the two isolates constituted a new species in the genus Acetobacter . The genomic DNA of isolate MS16-SU-2T was sequenced. The assembled genome of the isolate was analysed, and the results showed that the highest average nucleotide identity value of 75.9 % was with Acetobacter papayae JCM 25143T and the highest digital DNA–DNA hybridization value of 25.1 % was with Acetobacter fallax LMG 1636T, which were lower than the cutoff values for species delineation. The phylogenetic tree based on the genome sequences showed that the lineage of isolate MS16-SU-2T was most closely related to A. papayae JCM 25143T and Acetobacter suratthaniensis TBRC 1719T, but separated from the branches of these two species. In addition, the two isolates could be distinguished from the type strains of closely related species by their phenotypic characteristics and MALDI-TOF profiles. Therefore, the two isolates, MS16-SU-2T (=TBRC 12339T=LMG 32243T) and MS18-SU-3 (=TBRC 12305), can be assigned to an independent species within the genus Acetobacter , and the name of Acetobacter garciniae sp. nov. is proposed for the two isolates.


2020 ◽  
Vol 70 (7) ◽  
pp. 4233-4244 ◽  
Author(s):  
Jakeline Renata Marçon Delamuta ◽  
Anderson José Scherer ◽  
Renan Augusto Ribeiro ◽  
Mariangela Hungria

Agrobacterium strains are associated with soil, plants and animals, and known mainly by their pathogenicity. We studied 14 strains isolated from nodules of healthy soybean and common bean plants in Brazil, Mexico, Ecuador and Mozambique. Sequence analysis of the 16S rRNA gene positioned the strains as Agrobacterium , but with low phylogenetic resolution. Multilocus sequence analysis (MLSA) of three partial housekeeping genes (glnII, gyrB and recA) positioned the strains in four distinct clades, with Agrobacterium pusense , Agrobacterium deltaense, Agrobacterium radiobacter and Agrobacterium sp. genomospecies G1. Analysis by BOX-PCR revealed high intraspecies diversity. Genomic analysis of representative strains of the three clades indicated that they carry the protelomerase telA gene, and MLSA analysis with six complete housekeeping genes (atpD, glnII, gyrB, recA, rpoB and thrC), as well as average nucleotide identity (less than 90 % with closest species) and digital DNA–DNA hybridization (less than 41 % with closest species) revealed that strain CNPSo 675T and Agrobacterium sp. genomospecies G1 compose a new species. Other phenotypic and genotypic characteristics were determined for the new clade. Although not able to re-nodulate the host, we hypothesize that several strains of Agrobacterium are endophytes in legume nodules, where they might contribute to plant growth. Our data support the description of the CNPSo 675T and Agrobacterium sp. genomospecies G1 strains as a new species, for which the name Agrobacterium fabacearum is proposed. The type strain is CNPSo 675T (=UMR 1457T=LMG 31642T) and is also deposited in other culture collections.


Author(s):  
Nicole Hugouvieux-Cotte-Pattat ◽  
Frédérique Van Gijsegem

The genus Dickeya comprises plant pathogens that cause diseases in a large range of economically important crops and ornamentals. Strains previously assigned to the species Dickeya zeae are major pathogens attacking vital crops such as maize and rice. They are also frequently isolated from surface water. The newly described species Dickeya oryzae is closely related to D. zeae members, so that the limit between the two species can be difficult to define. In order to clearly distinguish the two species, globally described by the term ‘ D. zeae complex’, we sequenced the genome of four new water isolates and compared them to 14 genomes available in databases. Calculation of average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values confirmed the phylogenomic classification into the two species D. zeae and D. oryzae . It also allowed us to propose a new species, Dickeya parazeae sp. nov., to characterize a clade distinct from those containing the D. zeae type strain NCPPB2538T. Strain S31T (CFBP 8716T=LMG 32070T) isolated from water in France is proposed as the type strain of the new species. Phenotypic analysis of eight publically available strains revealed traits common to the five tested D. oryzae members but apparently not shared by the D. oryzae type strain. Genomic analyses indicated that a simple distinction between the species D. zeae , D. parazeae and D. oryzae can be obtained on the basis of the recA sequence. D. oryzae can be distinguished from the two other species by growth on l-tartaric acid. Based on the recA marker, several strains previously identified as D. zeae were re-assigned to the species D. parazeae or D. oryzae . This study also highlighted the broad host range diversity of these three species.


2020 ◽  
Vol 70 (3) ◽  
pp. 1769-1776 ◽  
Author(s):  
Ming Quan Lam ◽  
Maša Vodovnik ◽  
Maša Zorec ◽  
Sye Jinn Chen ◽  
Kian Mau Goh ◽  
...  

To date, there is sparse information for the genus Robertkochia with Robertkochia marina CC-AMO-30DT as the only described member. We report here a new species isolated from mangrove soil collected at Malaysia Tanjung Piai National Park and perform polyphasic characterization to determine its taxonomic position. Strain CL23T is a Gram-negative, yellow-pigmented, strictly aerobic, catalase-positive and oxidase-positive bacterium. The optimal growth conditions were determined to be at pH 7.0, 30–37 °C and in 1–2 % (w/v) NaCl. The major respiratory quinone was menaquinone-6 (MK-6) and the highly abundant polar lipids were four unidentified lipids, a phosphatidylethanolamine and two unidentified aminolipids. The 16S rRNA gene similarity between strain CL23T and R. marina CC-AMO-30DT is 96.67 %. Strain CL23T and R. marina CC-AMO-30DT clustered together and were distinguished from taxa of closely related genera in 16S rRNA gene phylogenetic analysis. Genome sequencing revealed that strain CL23T has a genome size of 4.4 Mbp and a G+C content of 40.72 mol%. Overall genome related indexes including digital DNA–DNA hybridization value and average nucleotide identity are 17.70 % and approximately 70%, below the cutoffs of 70 and 95%, respectively, indicated that strain CL23T is a distinct species from R. marina CC-AMO-30DT. Collectively, based on the phenotypic, chemotaxonomic, phylogenetic and genomic evidences presented here, strain CL23T is proposed to represent a new species with the name Robertkochia solimangrovi sp. nov. (KCTC 72252T=LMG 31418T). An emended description of the genus Robertkochia is also proposed.


2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1819-1824 ◽  
Author(s):  
Sooyeon Park ◽  
Ji-Min Park ◽  
Chul-Hyung Kang ◽  
Song-Gun Kim ◽  
Jung-Hoon Yoon

A Gram-stain-negative, non-motile, aerobic and pleomorphic bacterium, designated BS-W13T, was isolated from a tidal flat on the South Sea, South Korea, and its taxonomic position was investigated using a polyphasic approach. Strain BS-W13T grew optimally at 25 °C, at pH 7.0–8.0 and in the presence of 1.0–2.0 % (w/v) NaCl. Neighbour-joining and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences showed that strain BS-W13T clustered with the type strain of Seohaeicola saemankumensis , showing the highest sequence similarity (95.96 %) to this strain. Strain BS-W13T exhibited 16S rRNA gene sequence similarity values of 95.95, 95.91, 95.72 and 95.68 % to the type strains of Sulfitobacter donghicola , Sulfitobacter porphyrae , Sulfitobacter mediterraneus and Roseobacter litoralis , respectively. Strain BS-W13T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c as the major fatty acid. The polar lipid profile of strain BS-W13T, containing phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, one unidentified aminolipid and one unidentified lipid as major components, was distinguishable from those of some phylogenetically related taxa. The DNA G+C content of strain BS-W13T was 58.1 mol%. The phylogenetic data and differential chemotaxonomic and other phenotypic properties revealed that strain BS-W13T constitutes a novel genus and species within family Rhodobacteraceae of the class Alphaproteobacteria , for which the name Pseudoseohaeicola caenipelagi gen. nov., sp. nov. is proposed. The type strain is BS-W13T ( = KCTC 42349T = CECT 8724T).


2015 ◽  
Vol 65 (Pt_2) ◽  
pp. 593-597 ◽  
Author(s):  
Susan F. Koval ◽  
Henry N. Williams ◽  
O. Colin Stine

The taxonomic status of saltwater Bdellovibrio -like prokaryotic predators has been revised to assign species to Halobacteriovorax gen. nov. A reclassification of Bacteriovorax marinus as Halobacteriovorax marinus comb. nov. (type strain ATCC BAA-682T = DSM 15412T) and Bacteriovorax litoralis as Halobacteriovorax litoralis comb. nov. (type strain ATCC BAA-684T = DSM 15409T) is proposed. This revision is necessary because a previous proposal to retain saltwater isolates as species of Bacteriovorax and reclassify Bacteriovorax stolpii as Bacteriolyticum stolpii was not approved. The type species of a genus cannot be reassigned to another genus. Bacteriovorax stolpii is thus retained as the type species of Bacteriovorax and Halobacteriovorax marinus is the type species of Halobacteriovorax and of Halobacteriovoraceae fam. nov.


Author(s):  
Fenfa Li ◽  
Qingyi Xie ◽  
Shuangqing Zhou ◽  
Fandong Kong ◽  
Yun Xu ◽  
...  

Strain HNM0947T, representing a novel actinobacterium, was isolated from the coral Galaxea astreata collected from the coast of Wenchang, Hainan, China. The strain was found to have morphological and chemotaxonomic characteristics consistent with the genus Nocardiopsis . The organism formed abundant fragmented substrate mycelia and aerial mycelia which differentiated into non-motile, rod-shaped spores. Whole-cell hydrolysates contained meso-diaminopimelic acid and no diagnostic sugars. The major menaquinones were MK-10(H8), MK-10(H6) and MK-10(H4). The major phospholipids were phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannosides. The major fatty acids were iso-C16:0, anteiso-C17:0, C18:0, C18:0 10-methyl (TBSA) and anteiso-C15:0. The G+C content was 71.3 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain HNM0947T belonged to the genus Nocardiopsis and shared highest sequence similarity to Nocardiopsis salina YIM 90010T (98.8%), Nocardiopsis xinjiangensis YIM 90004T(98.5%) and Nocardiopsis kunsanensis DSM 44524T (98.3%). The strain HNM0947T was distinguished from its closest type strain by low average nucleotide identity (90.8%) and dDDH values (60.4%) respectively. Based on genotypic, chemotaxonomic and phenotypic characteristics, it was concluded that strain HNM0947T represents a novel species of the genus Nocardiopsis whose name was proposed as Nocardiopsis coralli sp. nov. The type strain was HNM0947T (=CCTCC AA 2020015 T=KCTC 49525 T).


Sign in / Sign up

Export Citation Format

Share Document