Aureimonas mangrovi sp. nov., a marine alphaproteobacterium isolated from mangrove sediment in Thailand

Author(s):  
Hao Huang ◽  
Porntep Punnarak ◽  
Qinghua Zhang ◽  
Ajcharaporn Piumsomboon ◽  
Lei Wang ◽  
...  

Two bacterial strains, designated as 1-4-3T and 1-4-4, were isolated from a mangrove sediment cultured with coastal seawater. The cells were Gram-stain-negative, motile, short, rod-shaped bacteria with flagella. Growth occurred at 4–37 °C, pH 7.0–9.0, and 0–7% NaCl. The predominant fatty acids of the novel strains were C18 : 1  ω7c, C19 : 0 cyclo ω8c, C18 : 0, and C16 : 0. A phylogenetic analysis based on 16S rRNA gene sequences and whole genome phylogeny analysis based on distance matrix revealed an affiliation between the two strains and the genus Aureimonas , with closest sequence similarity to A. populi 4M3-2T (96.41 and 96.64% similarity, respectively) and A. glaciistagni (96.01 and 96.23% similarity, respectively). The DNA G+C content of strain 1-4-3T was 66.80 mol%. Strain 1-4-3T displayed low DNA–DNA relatedness to A. populi 4M3-2T, with an average nucleotide identity value of 77.47 % and digital DNA–DNA hybridization value of 22.83 %. Genotypic, chemotaxonomic, and phenotypic data indicate that strains 1-4-3T and 1-4-4 represent a novel species of the genus Aureimonas , for which we propose the name Aureimonas mangrovi sp. nov. The type strain is 1-4-3T (=LMG 31693T=CGMCC 1.18507T).

Author(s):  
En Yi ◽  
Zongze Shao ◽  
Guizhen Li ◽  
Xiaobo Liang ◽  
Meixian Zhou

A novel marine bacterium, designated strain CHFG3-1-5T, was isolated from mangrove sediment sampled at Jiulong River estuary, Fujian, PR China. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain CHFG3-1-5T belonged to the genus Marinobacter , with the highest sequence similarity to Marinobacter segnicrescens SS011B1-4T (97.6%), followed by Marinobacter nanhaiticus D15-8WT (97.5%), Marinobacter bohaiensis T17T (97.1%) and Marinobacter hydrocarbonoclasticus SP.17T (90.6%). The bacterium was Gram-stain-negative, facultative anaerobic, oxidase- and catalase-positive, rod-shaped and motile with a polar flagellum. Strain CHFG3-1-5T grew optimally at 32–37 °C, pH 6.0–8.0 and in the presence of 2.0–3.0% (w/v) NaCl. The G+C content of the chromosomal DNA was 61.1 mol%. The major respiratory quinone was determined to be Q-9. The principal fatty acids were C16 : 0, summed feature 3 (C16 : 1 ω7c/ω6c), C12 : 0, summed feature 9 (C17 : 1 iso ω9c and/or C16 : 0 10-methyl), C12 : 0 3-OH and summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, three phospholipids, one glycolipid and two aminolipids. The average nucleotide identity and digital DNA–DNA hybridization values among the genomes of strain CHFG3-1-5T and the reference strains were 73.4–79.4 and 19.6–22.4%, respectively. Like many other species reported in the genus Marinobacter , strain CHFG3-1-5T was able to oxidise iron. The combined genotypic and phenotypic data showed that strain CHFG3-1-5T represents a novel species within the genus Marinobacter , for which the name Marinobacter mangrovi sp. nov. is proposed, with the type strain CHFG3-1-5T (=MCCC 1A18306T=KCTC 82398T).


Author(s):  
Donghua Qiu ◽  
Xiang Zeng ◽  
Lingyu Zeng ◽  
Guangyu Li ◽  
Zongze Shao

An anaerobic, alkaliphilic, halotolerant, Gram-stain-positive and rod-shaped bacterium, designated Q10-2T, was isolated from mangrove sediment sampled at the Jiulong river estuary, PR China. The cells of strain Q10-2T were motile and 0.5×2–4 µm in size. Strain Q10-2T grew at 8–45 °C (optimum, 32 °C), at pH 7.0–10.5 (optimum, pH 8.5) and in the presence of 0–6 % (w/v) NaCl (optimum, 3 %). It could use complex organic compounds and carbohydrates including d-fructose, d-galactose, d-glucose, d-mannitol, d-xylose, trehalose, lactose, maltose, sucrose and starch as carbon sources and electron donors. It could reduce sulphate, thiosulphate and elemental sulphur to sulphide, but not sulphite. Fe (Ⅲ) citrate, ferrihydrite, haematite and goethite in the presence of glucose as the electron donor were also reduced. Acetate, butyrate, ethanol, CO2 and H2 were end products of glucose fermentation. The predominant cellular fatty acids were composed of C14 : 0, C16 : 0 and summed features containing C16 : 1 ω7c and/or iso-C15 : 0 2-OH and iso-C17 : 1 and/or anteiso-C17 : 1 B. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the novel strain was most closely related to Fusibacter paucivorans DSM 12116T (95.5 % sequence similarity). The genome size of strain Q10-2T was 5.0 Mb, with a G+C content of 37.4 mol%. The average nucleotide identity and digital DNA–DNA hybridization values between strain Q10-2T and F. paucivorans DSM 12116T were 69.1 and 21.8 %, respectively. The combined genotypic and phenotypic data showed that strain Q10-2T represents a novel species of the genus Fusibacter , for which the name Fusibacter ferrireducens sp. nov. is proposed. The type strain is Q10-2T (=MCCC 1A16257T=KCTC 15906T).


2014 ◽  
Vol 64 (Pt_10) ◽  
pp. 3513-3519 ◽  
Author(s):  
Learn-Han Lee ◽  
Adzzie-Shazleen Azman ◽  
Nurullhudda Zainal ◽  
Shu-Kee Eng ◽  
Nurul-Syakima Ab Mutalib ◽  
...  

Strain MUSC 115T was isolated from mangrove soil of the Tanjung Lumpur river in the state of Pahang, Peninsular Malaysia. Cells of this strain stained Gram-positive and were non-spore-forming, short rods that formed yellowish-white colonies on different agar media. The taxonomy of strain MUSC 115T was studied by a polyphasic approach, and the organism showed a range of phylogenetic and chemotaxonomic properties consistent with those of the genus Microbacterium . The cell-wall peptidoglycan was of type B2β, containing the amino acids ornithine, alanine, glycine, glutamic acid and homoserine. The muramic acid was of the N-glycolyl form. The predominant menaquinones detected were MK-12, MK-13 and MK-11. The polar lipids consisted of phosphatidylglycerol, phosphoglycolipid, diphosphatidylglycerol, two unidentified lipids, three unidentified phospholipids and four unidentified glycolipids. The major fatty acids of the cell membrane were anteiso-C15 : 0 and anteiso-C17 : 0. The whole-cell sugars detected were ribose, glucose, mannose and galactose. Based on the 16S rRNA gene sequence, strain MUSC 115T showed the highest sequence similarity to Microbacterium immunditiarum SK 18T (98.1 %), M. ulmi XIL02T (97.8 %) and M. arborescens DSM 20754T (97.5 %) and lower sequence similarity to strains of other species of the genus Microbacterium . DNA–DNA hybridization experiments revealed a low level of DNA–DNA relatedness (less than 24 %) between strain MUSC 115T and the type strains of closely related species. Furthermore, BOX-PCR fingerprint comparison also indicated that strain MUSC 115T represented a unique DNA profile. The DNA G+C content determined was 70.9±0.7 mol%, which is lower than that of M. immunditiarum SK 18T. Based on the combination of genotypic and phenotypic data, it is proposed that strain MUSC 115T represents a novel species of the genus Microbacterium , for which the name Microbacterium mangrovi sp. nov. is proposed. The type strain is MUSC 115T ( = MCCC 1K00251T = DSM 28240T = NBRC 110089T).


2013 ◽  
Vol 63 (Pt_3) ◽  
pp. 934-938 ◽  
Author(s):  
Wen-Ming Chen ◽  
Rey-Chang Chang ◽  
Chih-Yu Cheng ◽  
Yu-Wen Shiau ◽  
Shih-Yi Sheu

A novel bacterium, designated strain JchiT, was isolated from soil in Taiwan and characterized using a polyphasic approach. Cells of strain JchiT were aerobic, Gram-stain-negative, motile and rod-shaped. They contained poly-β-hydroxybutyrate granules and formed dark-yellow colonies. Growth occurred at 20–37 °C (optimum between 25 and 30 °C), at pH 6.0–8.0 (optimum between pH 7.0 and pH 8.0) and with 0–2 % NaCl (optimum between 0 and 1 %). Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain JchiT belonged to the genus Jeongeupia and that its closest neighbour was Jeongeupia naejangsanensis BIO-TAS4-2T (98.0 % sequence similarity). The major fatty acids (>10 %) of strain JchiT were summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c), C16 : 0 and C18 : 1ω7c. The major cellular hydroxy fatty acid was C12 : 0 3-OH. The isoprenoid quinone was Q-8 and the genomic DNA G+C content was 66.1 mol%. The polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylserine and two unidentified phospholipids. The DNA–DNA relatedness value between strain JchiT and J. naejangsanensis BIO-TAS4-2T was about 41.0 %. On the basis of the genotypic and phenotypic data, strain JchiT represents a novel species in the genus Jeongeupia , for which the name Jeongeupia chitinilytica sp. nov. is proposed. The type strain is JchiT ( = BCRC 80367T  = KCTC 23701T).


2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1786-1793 ◽  
Author(s):  
Wallace Rafael Souza ◽  
Rafael Eduardo Silva ◽  
Michael Goodfellow ◽  
Kanungnid Busarakam ◽  
Fernanda Sales Figueiro ◽  
...  

Strain SB026T was isolated from Brazilian rainforest soil and its taxonomic position established using data from a polyphasic study. The organism showed a combination of chemotaxonomic and morphological features consistent with its classification in the genus Amycolatopsis and formed a branch in the Amycolatopsis 16S rRNA gene tree together with Amycolatopsis bullii NRRL B-24847T, Amycolatopsis plumensis NRRL B-24324T, Amycolatopsis tolypomycina DSM 44544T and Amycolatopsis vancoresmycina NRRL B-24208T. It was related most closely to A. bullii NRRL B-24847T (99.0 % 16S rRNA gene sequence similarity), but was distinguished from this strain by a low level of DNA–DNA relatedness (~46 %) and discriminatory phenotypic properties. Based on the combined genotypic and phenotypic data, it is proposed that the isolate should be classified in the genus Amycolatopsis as representing a novel species, Amycolatopsis rhabdoformis sp. nov. The type strain is SB026T ( = CBMAI 1694T = CMAA 1285T = NCIMB 14900T).


2020 ◽  
Vol 70 (3) ◽  
pp. 2132-2136 ◽  
Author(s):  
Hyo-Jin Lee ◽  
Kyung-Sook Whang

A Gram-stain-negative bacterium, designated strain PF-30T, was isolated from floodwater of a paddy field in South Korea. Strain PF-30T was found to be a strictly aerobic, motile and pink-pigmented rods which can grow at 25–40 °C (optimum, 28 °C), at pH 5.0–9.0 (optimum pH 7.0) and at salinities of 0.5–3.0 % NaCl (optimum 0.5 % NaCl). Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain PF-30T belongs to the genus Elioraea , showing highest sequence similarity to Elioraea tepidiphila TU-7T (97.1%) and less than 91.3 % similarity with other members of the family Acetobacteraceae . The average nucleotide identity (ANI) and DNA–DNA relatedness between the strain PF-30T and E. tepidiphila TU-7T yielded an ANI value of 75.1 % and DNA–DNA relatedness of 11.7±0.7 %, respectively. The major fatty acids were identified as C18 : 0 and C18 : 1 ω7c. The predominant respiratory quinone was identified as Q-10. The DNA G+C content was determined to be 69.9 mol%. The strain PF-30T was observed to produce plant-growth-promoting materials such as indole-3-acetic acid (IAA), siderophore and phytase. On the basis of the results from phylogenetic, chemotaxonomic and phenotypic data, we concluded that strain PF-30T represents a novel species of the genus Elioraea , for which the name Elioraea rosea sp. nov. is proposed. The type strain is PF-30T (=KACC 19985T=NBRC 113984T).


2013 ◽  
Vol 63 (Pt_4) ◽  
pp. 1545-1549 ◽  
Author(s):  
Yan Bing Lin ◽  
Xin Ye Wang ◽  
Ting Ting Wang ◽  
Shao Shan An ◽  
Peng Shi ◽  
...  

A novel actinobacterium, designated strain F22T, was isolated from grassland soil collected from the Ziwuling area on the Loess Plateau, China. The novel strain was found to have morphological and chemotaxonomic characteristics typical of members of the genus Streptomyces . Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain F22T belonged to the genus Streptomyces , being most closely related to Streptomyces resistomycificus NBRC 12814T (98.28 % sequence similarity), Streptomyces ciscaucasicus NBRC 12872T (98.14 %), Streptomyces chartreusis NBRC 12753T (98.14 %) and Streptomyces canus NRRL B-1989T (98.14 %). In DNA–DNA hybridizations and comparisons of morphological and phenotypic data, strain F22T could be distinguished from all of its closest phylogenetic relatives. Strain F22T exhibited antibacterial and antifungal activity, especially against Staphylococcus aureus , Bacillus subtilis and Cylindrocarpon destructans. Based on the DNA–DNA hybridization data and morphological, phenotypic and phylogenetic evidence, strain F22T represents a novel species of the genus Streptomyces , for which the name Streptomyces ziwulingensis sp. nov. is proposed. The type strain is F22T ( = CCNWFX 0001T = JCM 18081T = ACCC41875T).


Author(s):  
Renju Liu ◽  
Qiliang Lai ◽  
Li Gu ◽  
Peisheng Yan ◽  
Zongze Shao

A novel Gram-stain-negative, aerobic, gliding, rod-shaped and carotenoid-pigmented bacterium, designated A20-9T, was isolated from a microbial consortium of polyethylene terephthalate enriched from a deep-sea sediment sample from the Western Pacific. Growth was observed at salinities of 1–8 %, at pH 6.5–8 and at temperatures of 10–40 °C. The results of phylogenetic analyses based on the genome indicated that A20-9T formed a monophyletic branch affiliated to the family Schleiferiaceae , and the 16S rRNA gene sequences exhibited the maximum sequence similarity of 93.8 % with Owenweeksia hongkongensis DSM 17368T, followed by similarities of 90.4, 90.1 and 88.8 % with Phaeocystidibacter luteus MCCC 1F01079T, Vicingus serpentipes DSM 103558T and Salibacter halophilus MCCC 1K02288T, respectively. Its complete genome size was 4 035 598 bp, the genomic DNA G+C content was 43.2 mol%. Whole genome comparisons indicated that A20-9T and O. hongkongensis DSM 17368T shared 67.8 % average nucleotide identity, 62.7 % average amino acid identity value, 46.6% of conserved proteins and 17.8 % digital DNA–DNA hybridization identity. A20-9T contained MK-7 as the major respiratory quinone. Its major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and phospatidylcholine; and the major fatty acids were iso-C15 : 0 (37.5 %), iso-C16 : 0 3-OH (12.4 %), and summed feature 3 (C16 : 1ω7c /C16 : 1ω6c, 11.6 %). Combining the genotypic and phenotypic data, A20-9T could be distinguished from the members of other genera within the family Schleiferiaceae and represents a novel genus, for which the name Croceimicrobium hydrocarbonivorans gen. nov., sp. nov. is proposed. The type strain is A20-9T (=MCCC 1A17358T =KCTC 72878T).


Author(s):  
Shaobin Xie ◽  
Shasha Wang ◽  
Dengfeng Li ◽  
Zongze Shao ◽  
Qiliang Lai ◽  
...  

A novel mesophilic, hydrogen-, and sulfur-oxidizing bacterium, designated strain ST-419T, was isolated from a deep-sea hydrothermal vent plume on the Carlsberg Ridge of the Northwestern Indian Ocean. The isolate was a Gram-staining-negative, non-motile and coccoid to oval-shaped bacterium. Growth was observed at 4–50 °C (optimum 37 °C), pH 5.0–8.6 (optimum pH 6.0) and 1.0–5.0 % (w/v) NaCl (optimum 3.0 %). ST-419T could grow chemlithoautotrophically with molecular hydrogen, sulfide, elemental sulfur and thiosulfate as energy sources. Molecular oxygen, nitrate and elemental sulfur could be used as electron acceptors. The predominant fatty acids were C16 : 1ω7c, C18 : 1ω7c and C16 : 0. The major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylglycerol. The respiratory quinone was menaquinone MK-6 and the G+C content of the genomic DNA was 42.4 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that ST-419T represented a member of genus Sulfurovum and was most closely related to Sulfurovum riftiae 1812ET, with 97.6 % sequence similarity. The average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values between ST-419T and S. riftiae 1812ET were 74.6 and 19.6 %, respectively. The combined genotypic and phenotypic data indicate that ST-419T represents a novel species within the genus Sulfurovum , for which the name Sulfurovum indicum sp. nov. is proposed. The type strain is ST-419T (=MCCC 1A17954T=KCTC 25164T).


Author(s):  
Soon Dong Lee ◽  
Yeong-Sik Byeon ◽  
Sung-Min Kim ◽  
Hong Lim Yang ◽  
In Seop Kim

Taxonomic positions of four Gram-negative bacterial strains, which were isolated from larvae of two insects in Jeju, Republic of Korea, were determined by a polyphasic approach. Strains CWB-B4, CWB-B41 and CWB-B43 were recovered from larvae of Protaetia brevitarsis seulensis, whereas strain BWR-B9T was from larvae of Allomyrina dichotoma. All the isolates grew at 10–37 °C, at pH 5.0–9.0 and in the presence of 4 % (w/v) NaCl. The 16S rRNA gene phylogeny showed that the four isolates formed two distinct sublines within the order Enterobacteriales and closely associated with members of the genus Jinshanibacter . The first group represented by strain CWB-B4 formed a tight cluster with Jinshanibacter xujianqingii CF-1111T (99.3 % sequence similarity), whereas strain BWR-B9T was most closely related to Jinshanibacter zhutongyuii CF-458T (99.5 % sequence similarity). The 92 core gene analysis showed that the isolates belonged to the family Budviciaceae and supported the clustering shown in 16S rRNA gene phylogeny. The genomic DNA G+C content of the isolates was 45.2 mol%. A combination of overall genomic relatedness and phenotypic distinctness supported that three isolates from Protaetia brevitarsis seulensis are different strains of Jinshanibacter xujianqingii , whereas one isolate from Allomyrina dichotoma represents a new species of the genus Jinshanibacter . On the basis of results obtained here, Jinshanibacter allomyrinae sp. nov. (type strain BWR-B9T=KACC 22153T=NBRC 114879T) and Insectihabitans xujianqingii gen. nov., comb. nov. are proposed, with the emended descriptions of the genera Jinshanibacter , Limnobaculum and Pragia .


Sign in / Sign up

Export Citation Format

Share Document