Rapid macrolide and amikacin resistance testing for Mycobacterium abscessus in people with cystic fibrosis

2021 ◽  
Vol 70 (4) ◽  
Author(s):  
Amanda Bordin ◽  
Sushil Pandey ◽  
Christopher Coulter ◽  
Melanie Syrmis ◽  
Carolyn Pardo ◽  
...  

Introduction. Mycobacterium abscessus complex (MABSC) is an environmental organism and opportunistic pathogen. MABSC pulmonary infections in people with cystic fibrosis are of growing clinical concern. Resistance data guide the use of macrolides and amikacin in MABSC pulmonary disease treatment. MABSC can acquire resistance against macrolides or amikacin via 23S or 16S rRNA gene mutations, respectively. Gap Statement. Current culture-based methods for MABSC detection and antibiotic resistance characterization are typically prolonged, limiting their utility to directly inform treatment or clinical trials. Culture-independent molecular methods may help address this limitation. Aim. To develop real-time PCR assays for characterization of key 23S or 16S rRNA gene mutations associated with constitutive resistance in MABSC. Methodology. We designed two real-time PCR assays to detect the key 23S and 16S rRNA gene mutations. The highly conserved nature of rRNA genes was a major design challenge. To reduce potential cross-reactivity, primers included non-template bases and targeted single-nucleotide polymorphisms unique to MABSC. We applied these assays, as well as a previously developed real-time PCR assay for MABSC detection, to 968 respiratory samples from people with cystic fibrosis. The results from the molecular methods were compared to those for gold standard culture methods and 23S and 16S rRNA gene sequencing. Results.The real-time PCR MABSC detection assay provided a sensitivity of 83.8 % and a specificity of 97.8 % compared to culture. The results from the real-time PCR resistance detection assays were mostly concordant (>77.4 %) with cultured isolate sequencing. The real-time PCR resistance detection assays identified several samples harbouring both resistant and susceptible MABSC, while culture-dependent methods only identified susceptible MABSC in these samples. Conclusion. Using the molecular methods described here, results for health care providers or researchers could be available days or weeks earlier than is currently possible via culture-based antibiotic susceptibility testing.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Su-Young Kim ◽  
Dae Hun Kim ◽  
Seong Mi Moon ◽  
Ju Yeun Song ◽  
Hee Jae Huh ◽  
...  

AbstractWe evaluated the association between 16S rRNA gene (rrs) mutations and susceptibility in clinical isolates of amikacin-resistant nontuberculous mycobacteria (NTM) in NTM-pulmonary disease (PD) patients. Susceptibility was retested for 134 amikacin-resistant isolates (minimum inhibitory concentration [MIC] ≥ 64 µg/ml) from 86 patients. Amikacin resistance was reconfirmed in 102 NTM isolates from 62 patients with either Mycobacterium avium complex-PD (MAC-PD) (n = 54) or M. abscessus-PD (n = 8). MICs and rrs mutations were evaluated for 318 single colonies from these isolates. For the 54 MAC-PD patients, rrs mutations were present in 34 isolates (63%), comprising all 31 isolates with amikacin MICs ≥ 128 µg/ml, but only three of 23 isolates with an MIC = 64 µg/ml. For the eight M. abscessus-PD patients, all amikacin-resistant (MIC ≥ 64 µg/ml) isolates had rrs mutations. In amikacin-resistant isolates, the A1408G mutation (n = 29) was most common. Two novel mutations, C1496T and T1498A, were also identified. The culture conversion rate did not differ by amikacin MIC. Overall, all high-level and 13% (3/23) of low-level amikacin-resistant MAC isolates had rrs mutations whereas mutations were present in all amikacin-resistant M. abscessus isolates. These findings are valuable for managing MAC- and M. abscessus-PD and suggest the importance of phenotypic and genotypic susceptibility testing.


2008 ◽  
Vol 97 (10) ◽  
pp. 1376-1380 ◽  
Author(s):  
Andreas Ohlin ◽  
Anders Bäckman ◽  
Maria Björkqvist ◽  
Paula Mölling ◽  
Margaretha Jurstrand ◽  
...  

2012 ◽  
Vol 74 (10) ◽  
pp. 1315-1318 ◽  
Author(s):  
Yusaku WATANABE ◽  
Masatoshi FUJIHARA ◽  
Jin SUZUKI ◽  
Fumina SASAOKA ◽  
Kazuya NAGAI ◽  
...  

2015 ◽  
Vol 6 (4) ◽  
pp. 473-483 ◽  
Author(s):  
V.A. Sattler ◽  
K. Bayer ◽  
G. Schatzmayr ◽  
A.G. Haslberger ◽  
V. Klose

Natural feed additives are used to maintain health and to promote performance of pigs without antibiotics. Effects of a probiotic, inulin, and their combination (synbiotic), on the microbial diversity and composition at different intestinal locations were analysed using denaturing gradient gel electrophoresis (DGGE), real-time PCR, and 16S rRNA gene pyrosequencing. Bacterial diversity assessed by DGGE and/or pyrosequencing was increased by inulin in all three gut locations and by the synbiotic in the caecum and colon. In contrast, the probiotic did only affect the microbiota diversity in the ileum. Shifts in the DGGE microbiota profiles of the caecum and colon were detected for the pro- and synbiotic fed animals, whereas inulin profiles were more similar to the ones of the control. 16S rRNA gene pyrosequencing revealed that all three additives could reduce Escherichia species in each gut location, indicating a potential beneficial effect on the gut microbiota. An increase of relative abundance of Clostridiaceae in the large intestine was found in the inulin group and of Enterococcaceae in the ileum of probiotic fed pigs. Furthermore, real-time PCR results showed that the probiotic and synbiotic increased bifidobacterial numbers in the ileum, which was supported by sequencing results. The probiotic and inulin, to different extents, changed the diversity, relative abundance of phylotypes, and community profiles of the porcine microbiota. However, alterations of the bacterial community were not uniformly between gut locations, demonstrating that functionality of feed additives is site specific. Therefore, gut sampling from various locations is crucial when investigations aim to identify the composition of a healthy gut microbiota after its manipulation through feed additives.


2000 ◽  
Vol 38 (5) ◽  
pp. 1747-1752 ◽  
Author(s):  
C. E. Corless ◽  
M. Guiver ◽  
R. Borrow ◽  
V. Edwards-Jones ◽  
E. B. Kaczmarski ◽  
...  

A set of universal oligonucleotide primers specific for the conserved regions of the eubacterial 16S rRNA gene was designed for use with the real-time PCR Applied Biosystems 7700 (TaqMan) system. During the development of this PCR, problems were noted with the use of this gene as an amplification target. Contamination of reagents with bacterial DNA was a major problem exacerbated by the highly sensitive nature of the real-time PCR chemistry. This was compounded by the use of a small amplicon of approximately 100 bases, as is necessary with TaqMan chemistry. In an attempt to overcome this problem, several methodologies were applied. Certain treatments were more effective than others in eliminating the contaminating DNA; however, to achieve this there was a decrease in sensitivity. With UV irradiation there was a 4-log reduction in PCR sensitivity, with 8-methoxypsoralen activity facilitated by UV there was between a 5- and a 7-log reduction, and with DNase alone and in combination with restriction digestion there was a 1.66-log reduction. Restriction endonuclease treatment singly and together did not reduce the level of contaminating DNA. Without the development of ultrapure Taq DNA polymerase, ultrapure reagents, and plasticware guaranteed to be free of DNA, the implementation of a PCR for detection of eubacterial 16S rRNA with the TaqMan system will continue to be problematical.


2014 ◽  
Vol 58 (3) ◽  
pp. 375-378 ◽  
Author(s):  
Hinako Sashida ◽  
Ryô Harasawa ◽  
Toshihiro Ichijo ◽  
Hiroshi Satoh ◽  
Kazuhisa Furuhama

Abstract The presence of Mycoplasma haemomuris (haemoplasma) in blood samples collected from specific pathogen-free (SPF) laboratory rats bred in Japan was reported. Its presence was examined in Fischer 344, Sprague-Dawley (SD), and Wistar rat strains of both sexes by real-time PCR. All strains were positive for M. haemomuris infection. The 16S rRNA gene of M. haemomuris strain detected in the animals was amplified using end-point PCR. Only the entire nucleotide sequence of 16S rRNA gene of a mycoplasma strain detected in SD rats was determined and compared to those of other haemoplasmas. Our investigations suggest a wide M. haemomuris infection among the SPF rats purchased from commercial breeders in Japan.


Sign in / Sign up

Export Citation Format

Share Document