scholarly journals Rapid identification of Acinetobacter baumannii, Acinetobacter nosocomialis and Acinetobacter pittii with a multiplex PCR assay

2014 ◽  
Vol 63 (9) ◽  
pp. 1154-1159 ◽  
Author(s):  
Te-Li Chen ◽  
Yi-Tzu Lee ◽  
Shu-Chen Kuo ◽  
Su-Pen Yang ◽  
Chang-Phone Fung ◽  
...  

Acinetobacter baumannii, Acinetobacter nosocomialis and Acinetobacter pittii are clinically relevant members of the Acinetobacter calcoaceticus–A. baumannii (Acb) complex and important nosocomial pathogens. These three species are genetically closely related and phenotypically similar; however, they differ in their epidemiology, antibiotic resistance and pathogenicity. In this study, we investigated the use of a multiplex PCR-based assay designed to detect internal fragments of the 16S–23S rRNA intergenic region and the gyrB and recA genes. The assay was capable of differentiating A. baumannii, A. nosocomialis and A. pittii in a reliable manner. In 23 different reference strains and 89 clinical isolates of Acinetobacter species, the assay accurately identified clinically relevant Acb complex species except those ‘between 1 and 3’ or ‘close to 13TU’. None of the non-Acb complex species was misidentified. In an analysis of 1034 positive blood cultures, the assay had a sensitivity of 92.4 % and specificity of 98.2 % for Acb complex identification. Our results show that a single multiplex PCR assay can reliably differentiate clinically relevant Acb complex species. Thus, this method may be used to better understand the clinical differences between infections caused by these species.

Author(s):  
Reza Ranjbar ◽  
Shahin Zayeri ◽  
Amir Mirzaie

Background and Objectives: Acinetobacter baumannii has been known as a major pathogen causing nosocomial infec- tions. The aim of this study was to develop multiplex PCR for rapid and simultaneous detection of metallo-β-lactamase (MBL) genes in clinical isolates of A. baumannii. Materials and Methods: In this study, we used three sets of primers to amplify the MBL genes including bla        ,     bla   and bla   OXA-48 . The multiplex PCR assay was optimized for rapid and simultaneous detection of MBL genes in A. bau-   OXA-23   NDM   mannii strains recovered from clinical samples. Results: A. baumannii strains recovered from clinical samples were subjected to the study. The multiplex PCR produced 3   OXA-48   OXA-23   bands of 501 bp for bla        , 744 bp for bla observed in multiplex PCR.   OXA-48   and 623 bp for bla   NDM   genes. In addition to, no any cross-reactivity was   Conclusion: Based on obtained data, the multiplex PCR had a good specificity without any cross reactivity and it appears that the multiplex PCR is reliable assay for simultaneous detection of MBL genes in A. baumannii strains.  


Plants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 948
Author(s):  
Wook Jin Kim ◽  
Sungyu Yang ◽  
Goya Choi ◽  
Inkyu Park ◽  
Pureum Noh ◽  
...  

Dimocarpus longan, Litchi chinensis, and Nephelium lappaceum are commercially valuable subtropical and tropical fruits of the Sapindaceae family. Arillus and seeds of the three species have very similar morphologies; however, the arillus of D. longan is used as the herbal medicine Longan Arillus and seeds of L. chinensis are used as Litchi Semen in Korean and Chinese pharmacopoeias. The adulteration of herbal medicines with inauthentic species, including the use of Aril and seed fractions acquired from a single species for two herbal medicines (e.g., Longan Arillus and Litchi Semen), is often driven by economic motives. DNA markers are a tool for the detection of adulterants in commercial products. To establish rapid and reliable assays for the genetic identification of authentic Longan Arillus and Litchi Semen, we developed DNA markers with high specificity and sensitivity based on internal transcribed spacer (ITS) sequences. The newly developed DNA markers and multiplex PCR assay may contribute to efforts to protect against adulteration, quality control, and the standardization of herbal medicines.


2021 ◽  
pp. 104063872110634
Author(s):  
Barbara Ujvári ◽  
Hubert Gantelet ◽  
Tibor Magyar

The ability to distinguish among the subspecies of Pasteurella multocida isolates is important epidemiologically; however, classification at the subspecies level based on the results of conventional biochemical tests (fermentation of sorbitol and dulcitol) is reportedly not accurate in all cases. Therefore, we developed a rapid, multiplex PCR assay to differentiate among the 3 subspecies of P. multocida. The PCR assay includes the P. multocida species–specific primers KMT1SP6 and KMT1T7 as an internal amplification control, with a newly designed gatD (galactitol-1-phosphate-5-dehydrogenase)-specific primer pair (unique for subsp. gallicida), and primers targeting a 16S rRNA gene region specific for subsp. septica. The subspecies specificity of the PCR was demonstrated by applying the test to a collection of 70 P. multocida isolates, including the Heddleston serovar reference strains; all isolates and strains were assigned correctly. The PCR assay is a sensitive, specific, and highly effective method for the identification of P. multocida subspecies, and an alternative to biochemical test–based differentiation. A possible relationship was noticed between P. multocida subspecies and lipopolysaccharide (LPS) genotype; all but one of the subsp. gallicida strains were isolated only from avian hosts and represented L1 LPS genotype. Subsp. multocida and subsp. septica isolates were classified into 5 and 4 different LPS genotypes, respectively, of which L3 was the only LPS genotype shared between these 2 subspecies.


2009 ◽  
Vol 10 (6) ◽  
pp. 1861-1864 ◽  
Author(s):  
Bhawna Dubey ◽  
P. R. Meganathan ◽  
Ikramul Haque

2019 ◽  
Vol 164 (3) ◽  
pp. 819-830 ◽  
Author(s):  
Yannick Born ◽  
Leandra E. Knecht ◽  
Mirjam Eigenmann ◽  
Michel Bolliger ◽  
Jochen Klumpp ◽  
...  

2018 ◽  
Vol 67 (1) ◽  
pp. 103-107 ◽  
Author(s):  
Maria Szymankiewicz ◽  
Beata Nakonowska

The results of the FilmArray® Blood Culture Identification Panel (BCID) (BioFire Diagnostics) and the culture with susceptibility testing of 70 positive blood cultures from oncologic patients were compared. The multiplex PCR assay (BCID) identified 81 of the 83 isolates (97.6%), covered by the panel. The panel produced results in significantly shorter time than standard identification methods, when counted from receiving positive blood cultures bottles to the final results. It is an accurate method for the rapid identification of pathogens and resistance genes from blood culture in oncologic patients.


2017 ◽  
Vol 55 (9) ◽  
pp. 2736-2751 ◽  
Author(s):  
Hansong Chae ◽  
Seung Jung Han ◽  
Su-Young Kim ◽  
Chang-Seok Ki ◽  
Hee Jae Huh ◽  
...  

ABSTRACTThe prevalence of tuberculosis continues to be high, and nontuberculous mycobacterial (NTM) infection has also emerged worldwide. Moreover, differential and accurate identification of mycobacteria to the species or subspecies level is an unmet clinical need. Here, we developed a one-step multiplex PCR assay using whole-genome analysis and bioinformatics to identify novel molecular targets. The aims of this assay were to (i) discriminate between theMycobacterium tuberculosiscomplex (MTBC) and NTM usingrv0577or RD750, (ii) differentiateM. tuberculosis(M. tuberculosis) from MTBC using RD9, (iii) selectively identify the widespreadM. tuberculosisBeijing genotype by targetingmtbk_20680, and (iv) simultaneously detect five clinically important NTM (M. avium,M. intracellulare,M. abscessus,M. massiliense, andM. kansasii) by targeting IS1311, DT1,mass_3210, andmkan_rs12360. An initial evaluation of the multiplex PCR assay using reference strains demonstrated 100% specificity for the targetedMycobacteriumspecies. Analytical sensitivity ranged from 1 to 10 pg for extracted DNA and was 103and 104CFU for pure cultures and nonhomogenized artificial sputum cultures, respectively, of the targeted species. The accuracy of the multiplex PCR assay was further evaluated using 55 reference strains and 94 mycobacterial clinical isolates. Spoligotyping, multilocus sequence analysis, and a commercial real-time PCR assay were employed as standard assays to evaluate the multiplex PCR assay with clinicalM. tuberculosisand NTM isolates. The PCR assay displayed 100% identification agreement with the standard assays. Our multiplex PCR assay is a simple, convenient, and reliable technique for differential identification of MTBC,M. tuberculosis,M. tuberculosisBeijing genotype, and major NTM species.


Sign in / Sign up

Export Citation Format

Share Document