Antigenic and genomic characterization of human influenza A and B viruses circulating in Argentina after the introduction of influenza A(H1N1)pdm09

2014 ◽  
Vol 63 (12) ◽  
pp. 1626-1637 ◽  
Author(s):  
Mara L. Russo ◽  
Andrea V. Pontoriero ◽  
Estefania Benedetti ◽  
Andrea Czech ◽  
Martin Avaro ◽  
...  

This study was conducted as part of the Argentinean Influenza and other Respiratory Viruses Surveillance Network, in the context of the Global Influenza Surveillance carried out by the World Health Organization (WHO). The objective was to study the activity and the antigenic and genomic characteristics of circulating viruses for three consecutive seasons (2010, 2011 and 2012) in order to investigate the emergence of influenza viral variants. During the study period, influenza virus circulation was detected from January to December. Influenza A and B, and all current subtypes of human influenza viruses, were present each year. Throughout the 2010 post-pandemic season, influenza A(H1N1)pdm09, unexpectedly, almost disappeared. The haemagglutinin (HA) of the A(H1N1)pdm09 viruses studied were segregated in a different genetic group to those identified during the 2009 pandemic, although they were still antigenically closely related to the vaccine strain A/California/07/2009. Influenza A(H3N2) viruses were the predominant strains circulating during the 2011 season, accounting for nearly 76 % of influenza viruses identified. That year, all HA sequences of the A(H3N2) viruses tested fell into the A/Victoria/208/2009 genetic clade, but remained antigenically related to A/Perth/16/2009 (reference vaccine recommended for this three-year period). A(H3N2) viruses isolated in 2012 were antigenically closely related to A/Victoria/361/2011, recommended by the WHO as the H3 component for the 2013 Southern Hemisphere formulation. B viruses belonging to the B/Victoria lineage circulated in 2010. A mixed circulation of viral variants of both B/Victoria and B/Yamagata lineages was detected in 2012, with the former being predominant. A(H1N1)pdm09 viruses remained antigenically closely related to the vaccine virus A/California/7/2009; A(H3N2) viruses continually evolved into new antigenic clusters and both B lineages, B/Victoria/2/87-like and B/Yamagata/16/88-like viruses, were observed during the study period. The virological surveillance showed that the majority of the circulating strains during the study period were antigenically related to the corresponding Southern Hemisphere vaccine strains except for the 2012 A(H3N2) viruses.

2008 ◽  
Vol 13 (6) ◽  
pp. 5-6
Author(s):  
Influenza Project Team

Following the publications in Eurosurveillance on 31 January [1,2], the European Centre for Disease Prevention and Control (ECDC), the European Influenza Surveillance Scheme (EISS), the World Health Organization (WHO) and their partners have agreed to update the data on the occurrence of resistance of influenza A/H1N1 viruses to oseltamivir appearing on the ECDC and EISS websites on a weekly basis (every Thursday afternoon). Data on the ECDC website are for European Union (EU) and European Free Trade Association (EFTA) countries. The WHO has also published a global table, which it will also refresh weekly. All these data are available through an HTML page on the ECDC web-site [3]. The European data made available through EISS and the EU DG Research-funded European Surveillance Network for Vigilance Against Viral Resistance (VIRGIL) are based on the data that have been uploaded to the EISS antiviral resistance data-base by a fixed time on a Wednesday for publication on a Thursday.


2014 ◽  
Vol 9 (5) ◽  
pp. 842-847
Author(s):  
Reiko Saito ◽  
◽  
Yadanar Kyaw ◽  
Yi Yi Myint ◽  
Clyde Dapat ◽  
...  

The epidemiological study of influenza in Southeast Asia is limited. We surveyed influenza in Myanmar from 2007 to 2013. Nasopharyngeal swabs were collected from patients in the two cities of Yangon and Nay Pyi Taw. Samples were screened using rapid influenza diagnostic kits and identified by virus isolation. Isolates were characterized by cyclingprobe-based real-time PCR, drug susceptibility assay, and sequencing. Samples collected numbered 5,173, from which 1,686 influenza viruses were isolated during the seven-year study period. Of these, 187 strains were of seasonal influenza A(H1N1), 274 of influenza A(H1N1)pdm09, 791 of influenza A(H3N2), and 434 of influenza B. Interestingly, two zanamivir and amantadine-resistant strains each were detected in 2007 and 2008. These rare dual-resistant strains had a Q136K mutation in the NA protein and S31N substitution in the M2 protein. Our collaboration raised the influenza surveillance laboratory capacity in Myanmar and led Yangon’s National Health Laboratory – one of the nation’s leading research institutes – to being designated a National Influenza Center by the World Health Organization.


2009 ◽  
Vol 14 (21) ◽  
Author(s):  
A Solovyov ◽  
G Palacios ◽  
T Briese ◽  
W I Lipkin ◽  
R Rabadan

In March and April 2009, a new strain of influenza A(H1N1) virus has been isolated in Mexico and the United States. Since the initial reports more than 10,000 cases have been reported to the World Health Organization, all around the world. Several hundred isolates have already been sequenced and deposited in public databases. We have studied the genetics of the new strain and identified its closest relatives through a cluster analysis approach. We show that the new virus combines genetic information related to different swine influenza viruses. Segments PB2, PB1, PA, HA, NP and NS are related to swine H1N2 and H3N2 influenza viruses isolated in North America. Segments NA and M are related to swine influenza viruses isolated in Eurasia.


Author(s):  
Merryn Roe ◽  
Matthew Kaye ◽  
Pina Iannello ◽  
Hilda Lau ◽  
Iwona Buettner ◽  
...  

As part of its role in the World Health Organization’s (WHO) Global Influenza Surveillance and Response System (GISRS), the WHO Collaborating Centre for Reference and Research on Influenza in Melbourne received a record total of 5866 human influenza positive samples during 2017. Viruses were analysed for their antigenic, genetic and antiviral susceptibility properties and were propagated in qualified cells and hens’ eggs for use as potential seasonal influenza vaccine virus candidates. In 2017, influenza A(H3) viruses predominated over influenza A(H1)pdm09 and B viruses, accounting for a total of 54% of all viruses analysed. The majority of A(H1)pdm09, A(H3) and influenza B viruses analysed at the Centre were found to be antigenically similar to the respective WHO recommended vaccine strains for the Southern Hemisphere in 2017. However, phylogenetic analysis indicated that the majority of circulating A(H3) viruses had undergone genetic drift relative to the WHO recommended vaccine strain for 2017. Of 3733 samples tested for susceptibility to the neuraminidase inhibitors oseltamivir and zanamivir, only two A(H1)pdm09 viruses and one A(H3) virus showed highly reduced inhibition by oseltamivir, while just one A(H1)pdm09 virus showed highly reduced inhibition by zanamivir.


2020 ◽  
Vol 44 ◽  
Author(s):  
Olivia H Price ◽  
Natalie Spirason ◽  
Cleve Rynehart ◽  
Sook Kwan Brown ◽  
Angela Todd ◽  
...  

As part of its role in the World Health Organization’s (WHO) Global Influenza Surveillance and Response System (GISRS), the WHO Collaborating Centre for Reference and Research on Influenza in Melbourne received a total of 3993 human influenza-positive samples during 2018. Viruses were analysed for their antigenic, genetic and antiviral susceptibility properties. Selected viruses were propagated in qualified cells or hens’ eggs for use as potential seasonal influenza vaccine virus candidates. In 2018, influenza A(H1)pdm09 viruses predominated over influenza A(H3) and B viruses, accounting for a total of 53% of all viruses analysed. The majority of A(H1)pdm09, A(H3) and influenza B viruses analysed at the Centre were found to be antigenically similar to the respective WHO-recommended vaccine strains for the Southern Hemisphere in 2018. However, phylogenetic analysis indicated that a significant proportion of circulating A(H3) viruses had undergone genetic drift relative to the WHO-recommended vaccine strain for 2018. Of 2864 samples tested for susceptibility to the neuraminidase inhibitors oseltamivir and zanamivir, three A(H1)pdm09 viruses showed highly reduced inhibition by oseltamivir, while one B/Victoria virus showed highly reduced inhibition by both oseltamivir and zanamivir.


2021 ◽  
Vol 45 ◽  
Author(s):  
Heidi Peck ◽  
Jean Moselen ◽  
Sook Kwan Brown ◽  
Megan Triantafilou ◽  
Hilda Lau ◽  
...  

As part of its role in the World Health Organization’s (WHO) Global Influenza Surveillance and Response System (GISRS), the WHO Collaborating Centre for Reference and Research on Influenza in Melbourne received a record total of 9,266 human influenza positive samples during 2019. Viruses were analysed for their antigenic, genetic and antiviral susceptibility properties. Selected viruses were propagated in qualified cells or embryonated hen’s eggs for potential use in seasonal influenza virus vaccines. In 2019, influenza A(H3N2) viruses predominated over influenza A(H1N1)pdm09 and B viruses, accounting for a total of 51% of all viruses analysed. The majority of A(H1N1)pdm09, A(H3N2) and influenza B viruses analysed at the Centre were found to be antigenically similar to the respective WHO recommended vaccine strains for the Southern Hemisphere in 2019. However, phylogenetic analysis indicated that a significant proportion of circulating A(H3N2) viruses had undergone genetic drift relative to the WHO recommended vaccine strain for 2019. Of 5,301 samples tested for susceptibility to the neuraminidase inhibitors oseltamivir and zanamivir, four A(H1N1)pdm09 viruses showed highly reduced inhibition with oseltamivir, one A(H1N1)pdm09 virus showed highly reduced inhibition with zanamivir and three B/Victoria viruses showed highly reduced inhibition with zanamivir.


Author(s):  
Vivian.k Leung ◽  
Yi-Mo Deng ◽  
Matthew Kaye ◽  
Iwona Buettner ◽  
Hilda Lau ◽  
...  

As part of its role in the World Health Organization’s (WHO) Global Influenza Surveillance and Response System (GISRS), the WHO Collaborating Centre for Reference and Research on Influenza in Melbourne received a total of 4,247 human influenza positive samples during 2016. Viruses were analysed for their antigenic, genetic and antiviral susceptibility properties and also propagated in qualified cells and hens eggs for potential seasonal influenza vaccine virus candidates. In 2016, influenza A(H3) viruses predominated over influenza A(H1)pdm09 and B viruses, accounting for a total of 51% of all viruses analysed. The vast majority of A(H1)pdm09, A(H3) and influenza B viruses analysed at the Centre were found to be antigenically similar to the respective WHO recommended vaccine strains for the Southern Hemisphere in 2016. However, phylogenetic analysis of a selection of viruses indicated that the majority of circulating A(H3) viruses had undergone some genetic drift relative to the WHO recommended strain for 2016. Of more than 3,000 samples tested for resistance to the neuraminidase inhibitors oseltamivir and zanamivir, six A(H1)pdm09 viruses and two B/Victoria lineage viruses showed highly reduced inhibition to oseltamivir.


Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1145
Author(s):  
Hakimeh Baghaei Daemi ◽  
Muhammad Fakhar-e-Alam Kulyar ◽  
Xinlin He ◽  
Chengfei Li ◽  
Morteza Karimpour ◽  
...  

Influenza is a highly known contagious viral infection that has been responsible for the death of many people in history with pandemics. These pandemics have been occurring every 10 to 30 years in the last century. The most recent global pandemic prior to COVID-19 was the 2009 influenza A (H1N1) pandemic. A decade ago, the H1N1 virus caused 12,500 deaths in just 19 months globally. Now, again, the world has been challenged with another pandemic. Since December 2019, the first case of a novel coronavirus (COVID-19) infection was detected in Wuhan. This infection has risen rapidly throughout the world; even the World Health Organization (WHO) announced COVID-19 as a worldwide emergency to ensure human health and public safety. This review article aims to discuss important issues relating to COVID-19, including clinical, epidemiological, and pathological features of COVID-19 and recent progress in diagnosis and treatment approaches for the COVID-19 infection. We also highlight key similarities and differences between COVID-19 and influenza A to ensure the theoretical and practical details of COVID-19.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Colin A Russell ◽  
Peter M Kasson ◽  
Ruben O Donis ◽  
Steven Riley ◽  
John Dunbar ◽  
...  

Assessing the pandemic risk posed by specific non-human influenza A viruses is an important goal in public health research. As influenza virus genome sequencing becomes cheaper, faster, and more readily available, the ability to predict pandemic potential from sequence data could transform pandemic influenza risk assessment capabilities. However, the complexities of the relationships between virus genotype and phenotype make such predictions extremely difficult. The integration of experimental work, computational tool development, and analysis of evolutionary pathways, together with refinements to influenza surveillance, has the potential to transform our ability to assess the risks posed to humans by non-human influenza viruses and lead to improved pandemic preparedness and response.


2009 ◽  
Vol 14 (32) ◽  
Author(s):  
H Uphoff ◽  
S Geis ◽  
A Grüber ◽  
A M Hauri

For the next influenza season (winter 2009-10) the relative contributions to virus circulation and influenza-associated morbidity of the seasonal influenza viruses A(H3N2), A(H1N1) and B, and the new influenza A(H1N1)v are still unknown. We estimated the chances of seasonal influenza to circulate during the upcoming season using data of the German influenza sentinel scheme from 1992 to 2009. We calculated type and subtype-specific indices for past exposure and the corresponding morbidity indices for each season. For the upcoming season 2009-10 our model suggests that it is unlikely that influenza A(H3N2) will circulate with more than a low intensity, seasonal A(H1N1) with more than a low to moderate intensity, and influenza B with more than a low to median intensity. The probability of a competitive circulation of seasonal influenza A with the new A(H1N1)v is low, increasing the chance for the latter to dominate the next influenza season in Germany.


Sign in / Sign up

Export Citation Format

Share Document