scholarly journals Escherichia coli K-12 YfgF is an anaerobic cyclic di-GMP phosphodiesterase with roles in cell surface remodelling and the oxidative stress response

Microbiology ◽  
2010 ◽  
Vol 156 (9) ◽  
pp. 2873-2886 ◽  
Author(s):  
Melissa M. Lacey ◽  
Jonathan D. Partridge ◽  
Jeffrey Green

The Escherichia coli K-12 yfgF gene encodes a protein with domains associated with cyclic di-GMP signalling: GGDEF (associated with diguanylate cyclase activity) and EAL (associated with cyclic di-GMP phosphodiesterase activity). Here, it is shown that yfgF is expressed under anaerobic conditions from a class II FNR (regulator of fumarate and nitrate reduction)-dependent promoter. Anaerobic expression of yfgF is greatest in stationary phase, and in cultures grown at 28 °C, suggesting that low growth rates promote yfgF expression. Mutation of yfgF resulted in altered cell surface properties and enhanced sensitivity when anaerobic cultures were exposed to peroxides. The purified YfgF GGDEF-EAL (YfgFGE) and EAL (YfgFE) domains possessed cyclic di-GMP-specific phosphodiesterase activity, but lacked diguanylate cyclase activity. However, the catalytically inactive GGDEF domain was required for YfgFGE dimerization and enhanced cyclic di-GMP phosphodiesterase activity in the presence of physiological concentrations of Mg2+. The cyclic di-GMP phosphodiesterase activity of YfgFGE and YfgFE was inhibited by the product of the reaction, 5′-phosphoguanylyl-(3′–5′)-guanosine (pGpG). Thus, it is shown that the yfgF gene encodes an anaerobic cyclic di-GMP phosphodiesterase that is involved in remodelling the cell surface of E. coli K-12 and in the response to peroxide shock, with implications for integrating three global regulatory networks, i.e. oxygen regulation, cyclic di-GMP signalling and the oxidative stress response.

Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1774
Author(s):  
Xian Ju ◽  
Xingxing Fang ◽  
Yunzhu Xiao ◽  
Bingyu Li ◽  
Ruoping Shi ◽  
...  

Small non-translated regulatory RNAs control plenty of bacterial vital activities. The small RNA GcvB has been extensively studied, indicating the multifaceted roles of GcvB beyond amino acid metabolism. However, few reported GcvB-dependent regulation in minimal medium. Here, by applying a high-resolution RNA-seq assay, we compared the transcriptomes of a wild-type Escherichia coli K-12 strain and its gcvB deletion derivative grown in minimal medium and identified putative targets responding to GcvB, including flu, a determinant gene of auto-aggregation. The following molecular studies and the enhanced auto-aggregation ability of the gcvB knockout strain further substantiated the induced expression of these genes. Intriguingly, the reduced expression of OxyR (the oxidative stress regulator) in the gcvB knockout strain was identified to account for the increased expression of flu. Additionally, GcvB was characterized to up-regulate the expression of OxyR at the translational level. Accordingly, compared to the wild type, the GcvB deletion strain was more sensitive to oxidative stress and lost some its ability to eliminate endogenous reactive oxygen species. Taken together, we reveal that GcvB regulates oxidative stress response by up-regulating OxyR expression. Our findings provide an insight into the diversity of GcvB regulation and add an additional layer to the regulation of OxyR.


2003 ◽  
Vol 69 (6) ◽  
pp. 3406-3411 ◽  
Author(s):  
Alexandra H. Smith ◽  
James A. Imlay ◽  
Roderick I. Mackie

ABSTRACT Tannins are plant-derived polyphenols with antimicrobial effects. The mechanism of tannin toxicity towards Escherichia coli was determined by using an extract from Acacia mearnsii (Black wattle) as a source of condensed tannins (proanthocyanidins). E. coli growth was inhibited by tannins only when tannins were exposed to oxygen. Tannins auto-oxidize, and substantial hydrogen peroxide was generated when they were added to aerobic media. The addition of exogenous catalase permitted growth in tannin medium. E. coli mutants that lacked HPI, the major catalase, were especially sensitive to tannins, while oxyR mutants that constitutively overexpress antioxidant enzymes were resistant. A tannin-resistant mutant was isolated in which a promoter-region point mutation increased the level of HPI by 10-fold. Our results indicate that wattle condensed tannins are toxic to E. coli in aerobic medium primarily because they generate H2O2. The oxidative stress response helps E. coli strains to overcome their inhibitory effect.


2005 ◽  
Vol 156 (3) ◽  
pp. 312-321 ◽  
Author(s):  
Evelyne Turlin ◽  
Odile Sismeiro ◽  
Jean Pierre Le Caer ◽  
Valérie Labas ◽  
Antoine Danchin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document