knockout strain
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 10)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
Vol 5 (3) ◽  
pp. e202101225
Author(s):  
Sam Li ◽  
Jose-Jesus Fernandez ◽  
Amy S Fabritius ◽  
David A Agard ◽  
Mark Winey

Doublet microtubules (DMTs) provide a scaffold for axoneme assembly in motile cilia. Aside from α/β tubulins, the DMT comprises a large number of non-tubulin proteins in the luminal wall of DMTs, collectively named the microtubule inner proteins (MIPs). We used cryoET to study axoneme DMT isolated from Tetrahymena. We present the structures of DMT at nanometer and sub-nanometer resolution. The structures confirm that MIP RIB72A/B binds to the luminal wall of DMT by multiple DM10 domains. We found FAP115, an MIP-containing multiple EF-hand domains, located at the interface of four-tubulin dimers in the lumen of A-tubule. It contacts both lateral and longitudinal tubulin interfaces and playing a critical role in DMT stability. We observed substantial structure heterogeneity in DMT in an FAP115 knockout strain, showing extensive structural defects beyond the FAP115-binding site. The defects propagate along the axoneme. Finally, by comparing DMT structures from Tetrahymena and Chlamydomonas, we have identified a number of conserved MIPs as well as MIPs that are unique to each organism. This conservation and diversity of the DMT structures might be linked to their specific functions. Our work provides structural insights essential for understanding the roles of MIPs during motile cilium assembly and function, as well as their relationships to human ciliopathies.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yaqian Jin ◽  
Chao Wang ◽  
Yaotian Fan ◽  
Mawda Elmhadi ◽  
Ying Zhang ◽  
...  

Abstract Background Catabolite control protein A (CcpA) regulates the transcription of lactate dehydrogenase and pyruvate formate-lyase in Streptococcus bovis, but knowledge of its role in response to different pH is still limited. In this study, a ccpA-knockout strain of S. bovis S1 was constructed and then used to examine the effects of ccpA gene deletion on the growth and fermentation characteristics of S. bovis S1 at pH 5.5 or 6.5. Results There was a significant interaction between strain and pH for the maximum specific growth rate (μmax) and growth lag period (λ), which caused a lowest μmax and a longest λ in ccpA-knockout strain at pH 5.5. Deletion of ccpA decreased the concentration and molar percentage of lactic acid, while increased those of formic acid. Strains at pH 5.5 had decreased concentrations of lactic acid and formic acid compared to pH 6.5. The significant interaction between strain and pH caused the highest production of total organic acids and acetic acid in ccpA-knockout strain at pH 6.5. The activities of α-amylase and lactate dehydrogenase decreased in ccpA-knockout strain compared to the wild-type strain, and increased at pH 5.5 compared to pH 6.5. There was a significant interaction between strain and pH for the activity of acetate kinase, which was the highest in the ccpA-knockout strain at pH 6.5. The expression of pyruvate formate-lyase and acetate kinase was higher in the ccpA-knockout strain compared to wild-type strain. The lower pH improved the relative expression of pyruvate formate-lyase, while had no effect on the relative expression of acetate kinase. The strain × pH interaction was significant for the relative expression of lactate dehydrogenase and α-amylase, both of which were highest in the wild-type strain at pH 5.5 and lowest in the ccpA-knockout strain at pH 6.5. Conclusions Overall, low pH inhibited the growth of S. bovis S1, but did not affect the fermentation pattern. CcpA regulated S. bovis S1 growth and organic acid fermentation pattern. Moreover, there seemed to be an interaction effect between pH and ccpA deletion on regulating the growth and organic acids production of S. bovis S1.


Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1774
Author(s):  
Xian Ju ◽  
Xingxing Fang ◽  
Yunzhu Xiao ◽  
Bingyu Li ◽  
Ruoping Shi ◽  
...  

Small non-translated regulatory RNAs control plenty of bacterial vital activities. The small RNA GcvB has been extensively studied, indicating the multifaceted roles of GcvB beyond amino acid metabolism. However, few reported GcvB-dependent regulation in minimal medium. Here, by applying a high-resolution RNA-seq assay, we compared the transcriptomes of a wild-type Escherichia coli K-12 strain and its gcvB deletion derivative grown in minimal medium and identified putative targets responding to GcvB, including flu, a determinant gene of auto-aggregation. The following molecular studies and the enhanced auto-aggregation ability of the gcvB knockout strain further substantiated the induced expression of these genes. Intriguingly, the reduced expression of OxyR (the oxidative stress regulator) in the gcvB knockout strain was identified to account for the increased expression of flu. Additionally, GcvB was characterized to up-regulate the expression of OxyR at the translational level. Accordingly, compared to the wild type, the GcvB deletion strain was more sensitive to oxidative stress and lost some its ability to eliminate endogenous reactive oxygen species. Taken together, we reveal that GcvB regulates oxidative stress response by up-regulating OxyR expression. Our findings provide an insight into the diversity of GcvB regulation and add an additional layer to the regulation of OxyR.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Muzi Li ◽  
Jing Liu ◽  
Yayun Wu ◽  
Yihan Wu ◽  
Xiaodong Sun ◽  
...  

Abstract Background Metacaspases are multifunctional proteins found in plants, fungi and protozoa, and are involved in processes such as insoluble protein aggregate clearance and cell proliferation. Our previous study demonstrated that metacaspase-1 (MCA1) contributes to parasite apoptosis in Toxoplasma gondii. Deletion of MCA1 from T. gondii has no effect on the growth and virulence of the parasites. Three metacaspases were identified in the ToxoDB Toxoplasma Informatics Resource, and the function of metacaspase-2 (MCA2) and metacaspase-3 (MCA3) has not been demonstrated. Methods In this study, we constructed MCA1, MCA2 and MCA1/MCA2 transgenic strains from RHΔku80 (Δku80), including overexpressing strains and knockout strains, to clarify the function of MCA1 and MCA2 of T. gondii. Results MCA1 and MCA2 were distributed in the cytoplasm with punctuated aggregation, and part of the punctuated aggregation of MCA1 and MCA2 was localized on the inner membrane complex of T. gondii. The proliferation of the MCA1/MCA2 double-knockout strain was significantly reduced; however, the two single knockout strains (MCA1 knockout strain and MCA2 knockout strain) exhibited normal growth rates as compared to the parental strain, Δku80. In addition, endodyogeny was impaired in the tachyzoites whose MCA1 and MCA2 were both deleted due to multiple nuclei and abnormal expression of IMC1. We further found that IMC1 of the double-knockout strain was detergent-soluble, indicating that MCA1 and MCA2 are associated with IMC1 maturation. Compared to the parental Δku80 strain, the double-knockout strain was more readily induced from tachyzoites to bradyzoites in vitro. Furthermore, the double-knockout strain was less pathogenic in mice and was able to develop bradyzoites in the brain, which formed cysts and established chronic infection. Conclusion MCA1 and MCA2 are important factors which participate in IMC1 maturation and endodyogeny of T. gondii. The double-knockout strain has slower proliferation and was able to develop bradyzoites both in vitro and in vivo. Graphic abstract


2021 ◽  
Vol 7 (24) ◽  
pp. eabg8581
Author(s):  
Eden Ozer ◽  
Karin Yaniv ◽  
Einat Chetrit ◽  
Anastasya Boyarski ◽  
Michael M. Meijler ◽  
...  

The opportunistic pathogen, Pseudomonas aeruginosa, a flagellated bacterium, is one of the top model organisms for biofilm studies. To elucidate the location of bacterial flagella throughout the biofilm life cycle, we developed a new flagella biotracking tool. Bacterial flagella were site-specifically labeled via genetic code expansion. This enabled us to track bacterial flagella during biofilm maturation. Live flagella imaging revealed the presence and synthesis of flagella throughout the biofilm life cycle. To study the possible role of flagella in a biofilm, we produced a flagella knockout strain and compared its biofilm to that of the wild-type strain. Results showed a one order of magnitude stronger biofilm structure in the wild type in comparison with the flagella knockout strain. This suggests a possible structural role for flagella in a biofilm, conceivably as a scaffold. Our findings suggest a new model for biofilm maturation dynamic which underscores the importance of direct evidence from within the biofilm.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249379
Author(s):  
Ying Zhou ◽  
Tianying Zhong ◽  
Wenjing Wei ◽  
Zhuhua Wu ◽  
Anping Yang ◽  
...  

Tuberculosis caused by the pathogen Mycobacterium tuberculosis (MTB), remains a significant threat to global health. Elucidating the mechanisms of essential MTB genes provides an important theoretical basis for drug exploitation. Gene mtsp17 is essential and is conserved in the Mycobacterium genus. Although Mtsp17 has a structure closely resembling typical steroidogenic acute regulatory protein-related lipid transfer (START) family proteins, its biological function is different. This study characterizes the transcriptomes of Mycobacterium smegmatis to explore the consequences of mtsp17 downregulation on gene expression. Suppression of the mtsp17 gene resulted in significant down-regulation of 3% and upregulation of 1% of all protein-coding genes. Expression of desA1, an essential gene involved in mycolic acid synthesis, and the anti-SigF antagonist MSMEG_0586 were down-regulated in the conditional Mtsp17 knockout mutant and up-regulated in the Mtsp17 over-expression strain. Trends in the changes of 70 of the 79 differentially expressed genes (Log2 fold change > 1.5) in the conditional Mtsp17 knockout strain were the same as in the SigF knockout strain. Our data suggest that Mtsp17 is likely an activator of desA1 and Mtsp17 regulates the SigF regulon by SigF regulatory pathways through the anti-SigF antagonist MSMEG_0586. Our findings indicate the role of Mtsp17 may be in transcriptional regulation, provide new insights into the molecular mechanisms of START family proteins, and uncover a new node in the regulatory network of mycobacteria.


2020 ◽  
Author(s):  
Allison N. Dammann ◽  
Anna B. Chamby ◽  
Andrew J. Catomeris ◽  
Kyle M. Davidson ◽  
Hervé Tettelin ◽  
...  

AbstractStreptococcus agalactiae (group B Streptococcus; GBS) remains a dominant cause of serious neonatal infections. One aspect of GBS that renders it particularly virulent during the perinatal period is its ability to invade the chorioamniotic membranes and persist in amniotic fluid, which is nutritionally deplete and rich in fetal immunologic factors such as antimicrobial peptides. We used next-generation sequencing of transposon-genome junctions (Tn-seq) to identify five GBS genes that promote survival in the presence of human amniotic fluid. We confirmed our Tn-seq findings using a novel CRISPR inhibition (CRISPRi) gene expression knockdown system. This analysis showed that one gene, which encodes a GntR-class transcription factor that we named MrvR, conferred a significant fitness benefit to GBS in amniotic fluid. We generated an isogenic targeted knockout of the mrvR gene, which we found to have a growth defect in amniotic fluid relative to the wild type parent strain. In addition to growing poorly in amniotic fluid, the knockout also showed a significant biofilm defect in vitro. Subsequent in vivo studies showed that, while the knockout was able to cause persistent murine vaginal colonization, pregnant mice colonized with the knockout strain did not develop preterm labor despite consistent GBS invasion of the uterus and the fetoplacental units. In contrast, pregnant mice colonized with wild type GBS consistently deliver prematurely. Similarly, in a sepsis model in which 87% of mice infected with wild type GBS died within three days, none of the mice infected with the knockout strain died. In order to better understand the mechanism by which this newly identified transcription factor controls GBS virulence, we performed electrophoresis mobility shift assays with recombinant MrvR and whole-genome transcriptomic analysis on the knockout and wild type strains. We show that MrvR binds to its own promoter region, suggesting likely self-regulation. RNA-seq revealed that the transcription factor affects expression of a wide range of genes across the GBS chromosome. Nucleotide biosynthesis and salvage pathways were highly represented among the set of differentially expressed genes, suggesting a linkage between purine or pyrimidine availability and activity of MrvR in multiple GBS virulence traits.


2020 ◽  
Author(s):  
Eden Ozer ◽  
Karin Yaniv ◽  
Einat Chetrit ◽  
Anastasya Boyarski ◽  
Michael M. Meijler ◽  
...  

AbstractThe opportunistic pathogen, Pseudomonas aeruginosa, a flagellated bacterium, is one of the top model organisms for studying biofilm formation. In order to elucidate the role of the bacteria flagella in biofilm formation, we developed a new tool for flagella bio-tracking. We have site-specifically labeled the bacterial flagella by incorporating an unnatural amino acid into the flagella monomer via genetic code expansion. This enabled us to label and track the bacterial flagella during biofilm maturation. Direct, live imaging revealed for the first-time presence and synthesis of flagella throughout the biofilm lifecycle. To ascertain the possible role of the flagella in the strength of a biofilm we produced a “flagella knockout” strain and compared its biofilm to that of the wild type strain. Results showed a one order of magnitude stronger biofilm structure in the wild type in comparison to the flagella knockout strain. This suggests a newly discovered structural role for bacterial flagella in biofilm structure, possibly acting as a scaffold. Based on our findings we suggest a new model for biofilm maturation dynamic and underscore the importance of direct evidence from within the biofilm.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi271-vi271
Author(s):  
Sophie Fiola ◽  
Eli Ganni ◽  
Rita Lo ◽  
Ka Yee Lok ◽  
Elena Kuzmin ◽  
...  

Abstract High levels of D-2-hydroxyglutarate (D2HG) are found in several types of cancers, most notably low grade gliomas (LGGs). The accumulation of D-2HG contributes to tumorigenesis through a variety of mechanisms including decreased utilization of oxidative phosphorylation and histone hypermethylation. The use of the budding yeast Saccharomyces cerevisiae as a model system to study cancer allows for faster, more efficient elucidation of various molecular mechanisms, including functional genomics via genomic array screening. S. cerevisiae encodes two homologs of the human D-2HG dehydrogenase: the mitochondrial Dld2 and cytosolic Dld3. We detected an increase in the production of D-2HG in the dld3∆ knockout strain by LC-MS. In addition, the dld3∆ knockout strain shows decreased survival and a growth impairment in glucose-containing liquid media. However, this strain did not show a significant growth impairment on glucose or glycerol-containing solid media. Using publicly available Synthetic Genomic Array (SGA) analysis data from TheCellMap.org, we investigated the top negative gene interactions for our dld3 knockout strain. GO analysis of these negative gene interactions showed enrichment of targets locating to the mitochondria, suggesting that the increase of 2-HG leads to mitochondrial impairment, consistent with previous observations in other models of LGGs. The top two targets of the SGA screen were mdm35, a mitochondrial interspace membrane protein involved in assembly of the mitochondrial respiratory chain complex and cdc8, a component of the de novo pyrimidine biosynthesis pathway. Taken together, these results suggest that the dld3∆ knockout strain is an appropriate model in which to study the D-2HG-driven changes that occur during tumorigenesis.


2019 ◽  
Vol 34 (3) ◽  
pp. 283-292 ◽  
Author(s):  
Kento Ikeda ◽  
Takaaki Daimon ◽  
Hideki Sezutsu ◽  
Hiroko Udaka ◽  
Hideharu Numata

In Lepidoptera, the roles of period ( per) and the negative feedback involving this gene in circadian rhythm are controversial. In the present study, we established a per knockout strain using TALEN in Bombyx mori, and compared eclosion and hatching rhythms between the per-knockout and wild-type strains to examine whether per is actually involved in these rhythms. The generated per knockout allele was considered null, because it encoded an extensively truncated form of PERIOD (198 aa due to a 64-bp deletion in exon 7, in contrast to 1113 aa in the wild-type protein). In this per knockout strain, circadian rhythms in eclosion and hatching were disrupted. Under LD cycles, however, a steep peak existed at 1 h after lights-on in both eclosion and hatching, and was considered to be produced by a masking effect—a direct response to light. In the per-knockout strain, temporal expression changes of per and timeless ( tim) were also lost. The expression levels of tim were continuously high, probably due to the loss of negative feedback by per and tim. In contrast, the expression levels of per were much lower in the per knockout strain than in the wild type at every time point. From these results, we concluded that per is indispensable for circadian rhythms, and we suggest that the negative feedback loop of the circadian rhythm involving per functions for the production of behavioral rhythms in B. mori.


Sign in / Sign up

Export Citation Format

Share Document