scholarly journals Vaccination with the RSV fusion protein formulated with a combination adjuvant induces long-lasting protective immunity

2014 ◽  
Vol 95 (5) ◽  
pp. 1043-1054 ◽  
Author(s):  
R. Garg ◽  
L. Latimer ◽  
V. Gerdts ◽  
A. Potter ◽  
S. van Drunen Littel-van den Hurk

Respiratory syncytial virus (RSV) is one of the primary causative agents of upper and lower respiratory tract infections in young children, in particular infants. Recently, we reported the protective efficacy of a RSV vaccine formulation consisting of a truncated version of the fusion (F) protein formulated with a Toll-like receptor (TLR) agonist and an immunostimulatory peptide in a carrier system (ΔF/TriAdj). To evaluate the duration of immunity induced by this vaccine candidate, we carried out long-term trials. The ΔF was formulated with triple adjuvant (TriAdj) containing either polyinosinic : polycytidylic acid (polyI : C) or cytosine-phosphate-guanosine oligodeoxynucleotides (CpG ODNs) and administered intranasally to mice. One year after the second vaccination all mice were challenged with RSV. Both ΔF/TriAdj formulations mediated the induction of high levels of IgG1, IgG2a and virus-neutralizing antibodies, and IgA in the lungs. Based on the numbers of IFN-γ- and IL-5-secreting cells in the spleen, the immune response was slightly T-helper cell type 1 (Th1)-biased. This was confirmed by the presence of F85–93-specific CD8+ effector T cells in the lungs of both ΔF/TriAdj(polyI : C)- and ΔF/TriAdj(CpG)-immunized mice. Both ΔF/TriAdj formulations induced RSV-specific CD8+ T cells. However, ΔF/TriAdj(polyI : C) generated significantly higher IgG affinity maturation and higher numbers of RSV-specific CD8+ effector memory T cells in lungs and CD8+ central memory T cells in spleen and lymph nodes than ΔF/TriAdj(CpG). After RSV challenge, no virus replication and no evidence of vaccine-induced pathology were detected in mice immunized with either of the ΔF/TriAdj formulations, demonstrating that the duration of immunity induced with these vaccines is at least one year.

Pathogens ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 147 ◽  
Author(s):  
Retamal-Díaz ◽  
Covián ◽  
Pacheco ◽  
Castiglione-Matamala ◽  
Bueno ◽  
...  

Worldwide, human respiratory syncytial virus (RSV) is the most common etiological agent for acute lower respiratory tract infections (ALRI). RSV-ALRI is the major cause of hospital admissions in young children, and it can cause in-hospital deaths in children younger than six months old. Therefore, RSV remains one of the pathogens deemed most important for the generation of a vaccine. On the other hand, the effectiveness of a vaccine depends on the development of immunological memory against the pathogenic agent of interest. This memory is achieved by long-lived memory T cells, based on the establishment of an effective immune response to viral infections when subsequent exposures to the pathogen take place. Memory T cells can be classified into three subsets according to their expression of lymphoid homing receptors: central memory cells (TCM), effector memory cells (TEM) and resident memory T cells (TRM). The latter subset consists of cells that are permanently found in non-lymphoid tissues and are capable of recognizing antigens and mounting an effective immune response at those sites. TRM cells activate both innate and adaptive immune responses, thus establishing a robust and rapid response characterized by the production of large amounts of effector molecules. TRM cells can also recognize antigenically unrelated pathogens and trigger an innate-like alarm with the recruitment of other immune cells. It is noteworthy that this rapid and effective immune response induced by TRM cells make these cells an interesting aim in the design of vaccination strategies in order to establish TRM cell populations to prevent respiratory infectious diseases. Here, we discuss the biogenesis of TRM cells, their contribution to the resolution of respiratory viral infections and the induction of TRM cells, which should be considered for the rational design of new vaccines against RSV.


2014 ◽  
Vol 95 (2) ◽  
pp. 301-306 ◽  
Author(s):  
R. Garg ◽  
L. Latimer ◽  
E. Simko ◽  
V. Gerdts ◽  
A. Potter ◽  
...  

The majority of infections, including those caused by respiratory syncytial virus (RSV), occur at mucosal surfaces. As no RSV vaccine is available our goal is to produce an effective subunit vaccine with an adjuvant suitable for mucosal delivery and cross-presentation. A truncated secreted version of the RSV fusion (ΔF) protein formulated with polyI : C, an innate defence regulator peptide and polyphosphazene, induced local and systemic immunity, including affinity maturation of RSV F-specific IgG, IgA and virus-neutralizing antibodies, and F-specific CD8+ T-cells in the lung, when delivered intranasally. Furthermore, this ΔF protein formulation promoted the production of CD8+ central memory T-cells in the mediastinal lymph nodes and provided protection from RSV challenge. Formulation of ΔF protein with this adjuvant combination enhanced uptake by lung dendritic cells and trafficking to the draining lymph nodes. The ΔF protein formulation was confirmed to be highly efficacious and safe in cotton rats.


2021 ◽  
Author(s):  
Robert Thimme ◽  
Valerie Oberhardt ◽  
Hendrik Luxenburger ◽  
Janine Kemming ◽  
Isabel Schulien ◽  
...  

Abstract SARS-CoV-2 spike mRNA vaccines mediate protection from severe disease as early as 10 days post prime vaccination, when specific antibodies are hardly detectable and still lack neutralizing activity. Vaccine-induced T cells, especially CD8+ T cells, may thus be the main mediators of protection at this early stage. The details of antigen-specific CD8+ T cell induction after prime/boost vaccination, their comparison to naturally induced CD8+ T cell responses and their association with other arms of vaccine-induced adaptive immunity remain, however, incompletely understood. Here, we show on a single epitope level that both, a stable memory precursor pool of spike-specific CD8+ T cells and fully functional spike-specific effector CD8+ T cell populations, are vigorously mobilized as early as one week after prime vaccination when CD4+ T cell and spike-specific antibody responses are still weak and neutralizing antibodies are lacking. Boost vaccination after 3 weeks induced a full-fledged recall expansion generating highly differentiated CD8+ effector T cells, however, neither the functional capacity nor the memory precursor T cell pool was affected. Compared to natural infection, vaccine-induced early memory T cells exhibited similar frequencies and functional capacities but a different subset distribution dominated by effector memory T cells at the expense of self-renewing and multipotent central memory T cells. Our results indicate that spike-specific CD8+ T cells may represent the major correlate of early protection after SARS-CoV-2 mRNA/bnt162b2 prime vaccination that precede other effector arms of vaccine-induced adaptive immunity and are stably maintained after boost vaccination.


Virology ◽  
2005 ◽  
Vol 337 (1) ◽  
pp. 102-110 ◽  
Author(s):  
Bettina W.M. Richter ◽  
Jaya M. Onuska ◽  
Stefan Niewiesk ◽  
Gregory A. Prince ◽  
Maryna C. Eichelberger

2021 ◽  
Vol 10 (12) ◽  
pp. 2578
Author(s):  
Masutaka Furue ◽  
Mihoko Furue

OX40 is one of the co-stimulatory molecules expressed on T cells, and it is engaged by OX40L, primarily expressed on professional antigen-presenting cells such as dendritic cells. The OX40L–OX40 axis is involved in the sustained activation and expansion of effector T and effector memory T cells, but it is not active in naïve and resting memory T cells. Ligation of OX40 by OX40L accelerates both T helper 1 (Th1) and T helper 2 (Th2) effector cell differentiation. Recent therapeutic success in clinical trials highlights the importance of the OX40L–OX40 axis as a promising target for the treatment of atopic dermatitis.


Sign in / Sign up

Export Citation Format

Share Document