scholarly journals A novel class of herpesvirus with bivalve hosts

2005 ◽  
Vol 86 (1) ◽  
pp. 41-53 ◽  
Author(s):  
Andrew J. Davison ◽  
Benes L. Trus ◽  
Naiqian Cheng ◽  
Alasdair C. Steven ◽  
Moira S. Watson ◽  
...  

Ostreid herpesvirus 1 (OsHV-1) is the only member of the Herpesviridae that has an invertebrate host and is associated with sporadic mortality in the Pacific oyster (Crassostrea gigas) and other bivalve species. Cryo-electron microscopy of purified capsids revealed the distinctive T=16 icosahedral structure characteristic of herpesviruses, although the preparations examined lacked pentons. The gross genome organization of OsHV-1 was similar to that of certain mammalian herpesviruses (including herpes simplex virus and human cytomegalovirus), consisting of two invertible unique regions (UL, 167·8 kbp; US, 3·4 kbp) each flanked by inverted repeats (TRL/IRL, 7·6 kbp; TRS/IRS, 9·8 kbp), with an additional unique sequence (X, 1·5 kbp) between IRL and IRS. Of the 124 unique genes predicted from the 207 439 bp genome sequence, 38 were members of 12 families of related genes and encoded products related to helicases, inhibitors of apoptosis, deoxyuridine triphosphatase and RING-finger proteins, in addition to membrane-associated proteins. Eight genes in three of the families appeared to be fragmented. Other genes that did not belong to the families were predicted to encode DNA polymerase, the two subunits of ribonucleotide reductase, a helicase, a primase, the ATPase subunit of terminase, a RecB-like protein, additional RING-like proteins, an ion channel and several other membrane-associated proteins. Sequence comparisons showed that OsHV-1 is at best tenuously related to the two classes of vertebrate herpesviruses (those associated with mammals, birds and reptiles, and those associated with bony fish and amphibians). OsHV-1 thus represents a third major class of the herpesviruses.

Parasitology ◽  
2017 ◽  
Vol 145 (8) ◽  
pp. 1095-1104 ◽  
Author(s):  
A. J. O’ Reilly ◽  
C. Laide ◽  
A Maloy ◽  
S. Hutton ◽  
B. Bookelaar ◽  
...  

AbstractThe Pacific oyster Crassostrea gigas contributes significantly to global aquaculture; however, C. gigas culture has been affected by ostreid herpesvirus-1 (OsHV-1) and variants. The dynamics of how the virus maintains itself at culture sites is unclear and the role of carriers, reservoirs or hosts is unknown. Both wild and cultured mussels Mytilus spp. (Mytilus edulis, Mytilus galloprovincialis and hybrids) are commonly found at C. gigas culture sites. The objective of this study was to investigate if Mytilus spp. can harbour the virus and if viral transmission can occur between mussels and oysters. Mytilus spp. living at oyster trestles, 400–500 m higher up the shore from the trestles and up to 26 km at non-culture sites were screened for OsHV-1 and variants by all the World Organization for Animal Health (OIE) recommended diagnostic methods including polymerase chain reaction (PCR), quantitative PCR (qPCR), histology, in situ hybridization and confirmation using direct sequencing. The particular primers that target OsHV-1 and variants, including OsHV-1 microVar (μVar), were used in the PCR and qPCR. OsHV-1 μVar was detected in wild Mytilus spp. at C. gigas culture sites and more significantly the virus was detected in mussels at non-culture sites. Cohabitation of exposed wild mussels and naïve C. gigas resulted in viral transmission after 14 days, under an elevated temperature regime. These results indicate that mussels can harbour OsHV-1 μVar; however, the impact of OsHV-1 μVar on Mytilus spp. requires further investigation.


2001 ◽  
Vol 75 (11) ◽  
pp. 5357-5362 ◽  
Author(s):  
Jane Parkinson ◽  
Roger D. Everett

ABSTRACT Herpes simplex virus type 1 immediate early protein ICP0 influences virus infection by inducing the degradation of specific cellular proteins via a mechanism requiring its RING finger and the ubiquitin-proteasome pathway. Many RING finger proteins, by virtue of their RING finger domain, interact with E2 ubiquitin-conjugating enzymes and act as a component of an E3 ubiquitin ligase. We have recently shown that ICP0 induces the accumulation of colocalizing, conjugated ubiquitin, suggesting that ICP0 can act as or contribute to an E3 ubiquitin ligase. In this report we demonstrate that the ICP0-related RING finger proteins encoded by other alphaherpesviruses also induce colocalizing, conjugated ubiquitin, thereby suggesting that they act by similar biochemical mechanisms.


Aquaculture ◽  
2017 ◽  
Vol 469 ◽  
pp. 50-58 ◽  
Author(s):  
Mark D. Camara ◽  
Seiha Yen ◽  
Heinrich F. Kaspar ◽  
Aditya Kesarcodi-Watson ◽  
Nick King ◽  
...  

2015 ◽  
Vol 24 (1) ◽  
pp. 199-209 ◽  
Author(s):  
Laura Serracca ◽  
Irene Rossini ◽  
Roberta Battistini ◽  
Carlo Ercolini

Sign in / Sign up

Export Citation Format

Share Document