scholarly journals Orchid fleck virus is a rhabdovirus with an unusual bipartite genome

2006 ◽  
Vol 87 (8) ◽  
pp. 2413-2421 ◽  
Author(s):  
Hideki Kondo ◽  
Takanori Maeda ◽  
Yukio Shirako ◽  
Tetsuo Tamada

Orchid fleck virus (OFV) has an unusual bipartite negative-sense RNA genome with clear sequence similarities to those of nucleorhabdoviruses. The OFV genome consists of two single-stranded RNA molecules, RNA1 and RNA2 that are 6413 and 6001 nt long, respectively, with open reading frame (ORF) information in the complementary sense. RNA1 encodes 49 (ORF1), 26 (ORF2), 38 (ORF3), 20 (ORF4) and 61 kDa (ORF5) proteins, and RNA2 encodes a single protein of 212 kDa (ORF6). ORF1, ORF5 and ORF6 proteins had significant similarities (21–38 % identity) to the nucleocapsid protein (N), glycoprotein (G) and polymerase (L) gene products, respectively, of other rhabdoviruses, especially nucleorhabdoviruses, whereas ORF2, ORF3 and ORF4 proteins had no significant similarities to other proteins in the international databases. Similarities between OFV and rhabdoviruses were also found in the sequence complementarity at both termini of each RNA segment (the common terminal sequences are 3′-UGUGUC---GACACA-5′), the conserved intergenic sequences and in being negative sense. It was proposed that a new genus Dichorhabdovirus in the family Rhabdoviridae of the order Mononegavirales should be established with OFV as its prototype member and type species.

2005 ◽  
Vol 79 (11) ◽  
pp. 6940-6946 ◽  
Author(s):  
Anice C. Lowen ◽  
Amanda Boyd ◽  
John K. Fazakerley ◽  
Richard M. Elliott

ABSTRACT Bunyamwera virus (BUN) is the prototype virus of the family Bunyaviridae. BUN has a tripartite negative-sense RNA genome comprising small (S), medium (M), and large (L) segments. Partially complementary untranslated regions (UTRs) flank the coding region of each segment. The terminal 11 nucleotides of these UTRs are conserved between the three segments, while the internal regions are unique. The UTRs direct replication and transcription of viral RNA and are sufficient to allow encapsidation of viral RNA into ribonucleoprotein complexes. To investigate the segment-specific functions of the UTRs, we have used reverse genetics to recover a recombinant virus (called BUN MLM) in which the L segment open reading frame (ORF) is flanked by the M segment UTRs. Compared to wild-type virus, BUN MLM virus shows growth attenuation in cultured mammalian cells and a slower disease progression in mice, produces small plaques, expresses reduced levels of L mRNA and L (RNA polymerase) protein, synthesizes less L genomic and antigenomic RNA, and has an increased particle-to-PFU ratio. Our data suggest that the packaging of BUN RNAs is not segment specific. In addition, the phenotype of BUN MLM virus supports the finding that BUN UTRs differ in their regulation of RNA synthesis but suggests that the interplay between each segment UTR and its cognate ORF may contribute to that regulation. Since BUN MLM virus is attenuated due to an essentially irreversible mutation, the rearrangement of UTRs is a feasible strategy for vaccine design for the more pathogenic members of the Bunyaviridae.


2007 ◽  
Vol 82 (3) ◽  
pp. 1323-1331 ◽  
Author(s):  
Yongqi Yan ◽  
Siba K. Samal

ABSTRACT Newcastle disease virus (NDV), a member of the family Paramyxoviridae, has a nonsegmented negative-sense RNA genome consisting of six genes (3′-NP-P-M-F-HN-L-5′). The first three 3′-end intergenic sequences (IGSs) are single nucleotides (nt), whereas the F-HN and HN-L IGSs are 31 and 47 nt, respectively. To investigate the role of IGS length in NDV transcription and pathogenesis, we recovered viable viruses containing deletions or additions in the IGSs between the F and HN and the HN and L genes. The IGS of F-HN was modified to contain an additional 96 nt or more or a deletion of 30 nt. Similarly, the IGS of HN-L was modified to contain an additional 96 nt or more or a deletion of 42 nt. The level of transcription of each mRNA species (NP, F, HN, and L) was examined by Northern blot analysis. Our results showed that NDV can tolerate an IGS length of at least 365 nt. The extended lengths of IGSs down-regulated the transcription of the downstream gene and suggested that 31 nt in the F-HN IGS and 47 nt in the HN-L IGS are required for efficient transcription of the downstream gene. The effect of IGS length on pathogenicity of mutant viruses was evaluated in embryonated chicken eggs, 1-day-old chicks, and 6-week-old chickens. Our results showed that all IGS mutants were attenuated in chickens. The level of attenuation increased as the length of the IGS increased. Interestingly, decreased IGS length also attenuated the viruses. These findings can have significant applications in NDV vaccine development.


2005 ◽  
Vol 86 (3) ◽  
pp. 789-796 ◽  
Author(s):  
Fuming Yi ◽  
Jiamin Zhang ◽  
Haiyang Yu ◽  
Chuanfeng Liu ◽  
Junping Wang ◽  
...  

In this study, Dendrolimus punctatus tetravirus (DpTV) has been identified as a new member of the genus Omegatetravirus of the family Tetraviridae that may be related serologically to Nudaurelia capensis ω virus (NωV). DpTV particles are isometric, with a diameter of about 40 nm and a buoyant density of 1·281 g cm−3 in CsCl. The virus has two capsid proteins (of 62 500 and 6800 Da) and two single-stranded RNA molecules (RNA1 and RNA2), which are 5492 and 2490 nt long, respectively. RNA1 has a large open reading frame (ORF) encoding a polypeptide of 180 kDa; RNA2 contains two partially overlapping ORFs encoding polypeptides of 17 and 70 kDa. The 180 kDa protein, which contains consensus motifs of a putative methyltransferase, helicase and RNA-dependent RNA polymerase, shows significant similarity to those of other tetraviruses. The 17 kDa protein is a PEST (Pro/Glu/Ser/Thr) protein of unknown function. The 70 kDa protein is the coat protein precursor and is predicted to be cleaved at an Asn–Phe site located after residue 570. The 70 kDa protein shows 86 and 66 % identity to its homologues in NωV and Helicoverpa armigera stunt virus, respectively. Secondary-structure analysis revealed that the RNAs of DpTV have tRNA-like structures at their 3′ termini.


2020 ◽  
Vol 110 (1) ◽  
pp. 106-120 ◽  
Author(s):  
Avijit Roy ◽  
Andrew L. Stone ◽  
Gabriel Otero-Colina ◽  
Gang Wei ◽  
Ronald H. Brlansky ◽  
...  

The genus Dichorhavirus contains viruses with bipartite, negative-sense, single-stranded RNA genomes that are transmitted by flat mites to hosts that include orchids, coffee, the genus Clerodendrum, and citrus. A dichorhavirus infecting citrus in Mexico is classified as a citrus strain of orchid fleck virus (OFV-Cit). We previously used RNA sequencing technologies on OFV-Cit samples from Mexico to develop an OFV-Cit–specific reverse transcription PCR (RT-PCR) assay. During assay validation, OFV-Cit–specific RT-PCR failed to produce an amplicon from some samples with clear symptoms of OFV-Cit. Characterization of this virus revealed that dichorhavirus-like particles were found in the nucleus. High-throughput sequencing of small RNAs from these citrus plants revealed a novel citrus strain of OFV, OFV-Cit2. Sequence comparisons with known orchid and citrus strains of OFV showed variation in the protein products encoded by genome segment 1 (RNA1). Strains of OFV clustered together based on host of origin, whether orchid or citrus, and were clearly separated from other dichorhaviruses described from infected citrus in Brazil. The variation in RNA1 between the original (now OFV-Cit1) and the new (OFV-Cit2) strain was not observed with genome segment 2 (RNA2), but instead, a common RNA2 molecule was shared among strains of OFV-Cit1 and -Cit2, a situation strikingly similar to OFV infecting orchids. We also collected mites at the affected groves, identified them as Brevipalpus californicus sensu stricto, and confirmed that they were infected by OFV-Cit1 or with both OFV-Cit1 and -Cit2. OFV-Cit1 and -Cit2 have coexisted at the same site in Toliman, Queretaro, Mexico since 2012. OFV strain-specific diagnostic tests were developed.


2004 ◽  
Vol 78 (15) ◽  
pp. 8281-8288 ◽  
Author(s):  
M. A. Mir ◽  
A. T. Panganiban

ABSTRACT Hantaviruses are tripartite negative-sense RNA viruses and members of the Bunyaviridae family. The nucleocapsid (N) protein is encoded by the smallest of the three genome segments (S). N protein is the principal structural component of the viral capsid and is central to the hantavirus replication cycle. We examined intermolecular N-protein interaction and RNA binding by using bacterially expressed Sin Nombre virus N protein. N assembles into di- and trimeric forms. The mono- and dimeric forms exist transiently and assemble into a trimeric form. In contrast, the trimer is highly stable and does not efficiently disassemble into the mono- and dimeric forms. The purified N-protein trimer is able to discriminate between viral and nonviral RNA molecules and, interestingly, recognizes and binds with high affinity the panhandle structure composed of the 3′ and 5′ ends of the genomic RNA. In contrast, the mono- and dimeric forms of N bind RNA to form a complex that is semispecific and salt sensitive. We suggest that trimerization of N protein is a molecular switch to generate a protein complex that can discriminate between viral and nonviral RNA molecules during the early steps of the encapsidation process.


2003 ◽  
Vol 93 (11) ◽  
pp. 1422-1429 ◽  
Author(s):  
Belén Simón ◽  
José Luis Cenis ◽  
Francisco Beitia ◽  
Saif Khalid ◽  
Ignacio M. Moreno ◽  
...  

The genetic structure of field populations of begomoviruses and their whitefly vector Bemisia tabaci in Pakistan was analyzed. Begomoviruses and B. tabaci populations were sampled from different crops and weeds in different locations in Punjab and Sindh provinces, in areas where cotton leaf curl disease (CLCuD) occurs or does not occur. Phylogenetic analysis based on nucleotide sequences of the intergenic region in the viral DNA-A provided evidence of two clusters of isolates: viruses isolated from species in the family Malvaceae, and viruses isolated from other dicotyledon families. Analysis of the capsid protein (CP) open reading frame grouped isolates into three geographical clusters, corresponding to isolates collected in Punjab, Sindh, or both provinces. Random amplified polymorphic DNA analyses of the B. tabaci population showed that intrapopulation diversity was high at both the local and regional scales. Sequence analysis of the mitocondrial cytochrome oxydase I (mt COI) gene showed that the B. tabaci population was structured into at least three genetic lineages corresponding to the previously described Indian, Southeast Asian, and Mediterranean-African clades. The Indian clade was present only in Punjab, the Mediterranean-African only in Sindh, and the Southeast Asian in both provinces. B. tabaci haplotypes of the Indian clade were found only in the Punjab, where CLCuD occurs. Hence, the geographical distribution of virus and vector genotypes may be correlated, because similar phylogenetic relationships were detected for the viral CP and the vector mt COI genes.


2021 ◽  
Author(s):  
Liying Sun ◽  
Ziqian Lian ◽  
Subha Das ◽  
Jingxian Luo ◽  
Ida Bagus Andika

Abstract In this study, we describe the full-length genome sequence of a novel ourmia-like mycovirus, tentatively designated Botryosphaeria dothidea ourmia-like virus 1 (BdOLV1), isolated from the phytopathogenic fungus, Botryosphaeria dothidea strain P8, associated with apple ring rot in Shanxi province, China. The complete BdOLV1 genome is comprised of 2797 nucleotides, a positive-sense (+) single-stranded RNA (ssRNA) with a single open reading frame (ORF). The ORF putatively encodes a 642-amino acid polypeptide with conserved RNA-dependent RNA polymerase (RdRp) motifs, related to viruses of the family Botourmiaviridae. Phylogenetic analysis based on the RdRp amino acid sequences showed that BdOLV1 is grouped with oomycete-infecting unclassified viruses closely related to the genus Botoulivirus in Botourmiaviridae. This is the first report of a novel (+)ssRNA virus in B. dothidea related to the genus Botoulivirus in the family Botourmiaviridae.


2018 ◽  
Vol 93 (5) ◽  
Author(s):  
Krin S. Mann ◽  
Joan Chisholm ◽  
Hélène Sanfaçon

ABSTRACT Strawberry mottle virus (SMoV) belongs to the family Secoviridae (order Picornavirales) and has a bipartite genome with each RNA encoding one polyprotein. All characterized secovirids encode a single protease related to the picornavirus 3C protease. The SMoV 3C-like protease was previously shown to cut the RNA2 polyprotein (P2) at a single site between the predicted movement protein and coat protein (CP) domains. However, the SMoV P2 polyprotein includes an extended C-terminal region with a coding capacity of up to 70 kDa downstream of the presumed CP domain, an unusual characteristic for this family. In this study, we identified a novel cleavage event at a P↓AFP sequence immediately downstream of the CP domain. Following deletion of the PAFP sequence, the polyprotein was processed at or near a related PKFP sequence 40 kDa further downstream, defining two protein domains in the C-terminal region of the P2 polyprotein. Both processing events were dependent on a novel protease domain located between the two cleavage sites. Mutagenesis of amino acids that are conserved among isolates of SMoV and of the related Black raspberry necrosis virus did not identify essential cysteine, serine, or histidine residues, suggesting that the RNA2-encoded SMoV protease is not related to serine or cysteine proteases of other picorna-like viruses. Rather, two highly conserved glutamic acid residues spaced by 82 residues were found to be strictly required for protease activity. We conclude that the processing of SMoV polyproteins requires two viral proteases, the RNA1-encoded 3C-like protease and a novel glutamic protease encoded by RNA2. IMPORTANCE Many viruses encode proteases to release mature proteins and intermediate polyproteins from viral polyproteins. Polyprotein processing allows regulation of the accumulation and activity of viral proteins. Many viral proteases also cleave host factors to facilitate virus infection. Thus, viral proteases are key virulence factors. To date, viruses with a positive-strand RNA genome are only known to encode cysteine or serine proteases, most of which are related to the cellular papain, trypsin, or chymotrypsin proteases. Here, we characterize the first glutamic protease encoded by a plant virus or by a positive-strand RNA virus. The novel glutamic protease is unique to a few members of the family Secoviridae, suggesting that it is a recent acquisition in the evolution of this family. The protease does not resemble known cellular proteases. Rather, it is predicted to share structural similarities with a family of fungal and bacterial glutamic proteases that adopt a lectin fold.


2005 ◽  
Vol 95 (2) ◽  
pp. 128-135 ◽  
Author(s):  
Tetsuo Maoka ◽  
Tatsuji Hataya

The complete nucleotide sequence of the genome of Papaya leaf distortion mosaic virus (PLDMV) was determined. The viral RNA genome of strain LDM (leaf distortion mosaic) comprised 10,153 nucleotides, excluding the poly(A) tail, and contained one long open reading frame encoding a polyprotein of 3,269 amino acids (molecular weight 373,347). The polyprotein contained nine putative proteolytic cleavage sites and some motifs conserved in other potyviral polyproteins with 44 to 50% identities, indicating that PLDMV is a distinct species in the genus Potyvirus. Like the W biotype of Papaya ringspot virus (PRSV), the non-papaya-infecting biotype of PLDMV (PLDMV-C) was found in plants of the family Cucurbitaceae. The coat protein (CP) sequence of PLDMV-C in naturally infected-Trichosanthes bracteata was compared with those of three strains of the P biotype (PLDMV-P), LDM and two additional strains M (mosaic) and YM (yellow mosaic), which are biologically different from each other. The CP sequences of three strains of PLDMV-P share high identities of 95 to 97%, while they share lower identities of 88 to 89% with that of PLDMV-C. Significant changes in hydrophobicity and a deletion of two amino acids at the N-terminal region of the CP of PLDMV-C were observed. The finding of two biotypes of PLDMV implies the possibility that the papaya-infecting biotype evolved from the cucurbitaceae-infecting potyvirus, as has been previously suggested for PRSV. In addition, a similar evolutionary event acquiring infectivity to papaya may arise frequently in viruses in the family Cucurbitaceae.


1996 ◽  
Vol 40 (3) ◽  
pp. 616-620 ◽  
Author(s):  
A Bauernfeind ◽  
I Stemplinger ◽  
R Jungwirth ◽  
P Mangold ◽  
S Amann ◽  
...  

Plasmidic extended-spectrum beta-lactamases of Ambler class A are mostly inactive against ceftibuten. Salmonella typhimurium JMC isolated in Argentina harbors a bla gene located on a plasmid (pMVP-5) which confers transferable resistance to oxyiminocephalosporins, aztreonam, and ceftibuten. The beta-lactamase PER-2 (formerly ceftibutenase-1; CTI-1) is highly susceptible to inhibition by clavulanate and is located at a pI of 5.4 after isoelectric focusing. The blaPER-2 gene was cloned and sequenced. The nucleotide sequence of a 2.2-kb insert in vector pBluescript includes an open reading frame of 927 bp. Comparison of the deduced amino acid sequence of PER-2 with those of other beta-lactamases indicates that PER-2 is not closely related to TEM or SHV enzymes (25 to 26% homology). PER-2 is most closely related to PER-1 (86.4% homology), an Ambler class A enzyme first detected in Pseudomonas aeruginosa. An enzyme with an amino acid sequence identical to that of PER-1, meanwhile, was found in various members of the family Enterobacteriaceae isolated from patients in Turkey. Our data indicate that PER-2 and PER-1 represent a new group of Ambler class A extended-spectrum beta-lactamases. PER-2 so far has been detected only in pathogens (S. typhimurium, Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis) isolated from patients in South America, while the incidence of PER-1-producing strains so far has been restricted to Turkey, where it occurs both in members of the family Enterobacteriaceae and in P. aeruginosa.


Sign in / Sign up

Export Citation Format

Share Document