scholarly journals Reassortment of Genome Segments Creates Stable Lineages Among Strains of Orchid Fleck Virus Infecting Citrus in Mexico

2020 ◽  
Vol 110 (1) ◽  
pp. 106-120 ◽  
Author(s):  
Avijit Roy ◽  
Andrew L. Stone ◽  
Gabriel Otero-Colina ◽  
Gang Wei ◽  
Ronald H. Brlansky ◽  
...  

The genus Dichorhavirus contains viruses with bipartite, negative-sense, single-stranded RNA genomes that are transmitted by flat mites to hosts that include orchids, coffee, the genus Clerodendrum, and citrus. A dichorhavirus infecting citrus in Mexico is classified as a citrus strain of orchid fleck virus (OFV-Cit). We previously used RNA sequencing technologies on OFV-Cit samples from Mexico to develop an OFV-Cit–specific reverse transcription PCR (RT-PCR) assay. During assay validation, OFV-Cit–specific RT-PCR failed to produce an amplicon from some samples with clear symptoms of OFV-Cit. Characterization of this virus revealed that dichorhavirus-like particles were found in the nucleus. High-throughput sequencing of small RNAs from these citrus plants revealed a novel citrus strain of OFV, OFV-Cit2. Sequence comparisons with known orchid and citrus strains of OFV showed variation in the protein products encoded by genome segment 1 (RNA1). Strains of OFV clustered together based on host of origin, whether orchid or citrus, and were clearly separated from other dichorhaviruses described from infected citrus in Brazil. The variation in RNA1 between the original (now OFV-Cit1) and the new (OFV-Cit2) strain was not observed with genome segment 2 (RNA2), but instead, a common RNA2 molecule was shared among strains of OFV-Cit1 and -Cit2, a situation strikingly similar to OFV infecting orchids. We also collected mites at the affected groves, identified them as Brevipalpus californicus sensu stricto, and confirmed that they were infected by OFV-Cit1 or with both OFV-Cit1 and -Cit2. OFV-Cit1 and -Cit2 have coexisted at the same site in Toliman, Queretaro, Mexico since 2012. OFV strain-specific diagnostic tests were developed.

Plant Disease ◽  
2019 ◽  
Vol 103 (9) ◽  
pp. 2345-2352 ◽  
Author(s):  
Alejandro Olmedo-Velarde ◽  
Adam C. Park ◽  
Jari Sugano ◽  
Janice Y. Uchida ◽  
Michael Kawate ◽  
...  

Ti ringspot is an emerging foliar disease of the ti plant (Cordyline fruticosa) in Hawaii that is quickly spreading throughout the islands. Symptoms include small chlorotic ringspots on leaves that often coalesce to form larger lesions. Although several virus species have been discovered in symptomatic plants, none have been associated with these symptoms. Here, we report and characterize a novel virus closely associated with ti ringspot symptoms in Hawaii. The presence of double membrane bodies approximately 85 nm in diameter in symptomatic cells and sequence analyses of five genomic RNA segments obtained by high-throughput sequencing indicate that this virus is most closely related to members of the plant virus genus Emaravirus. Phylogenetic and sequence homology analyses place this virus on a distinct clade within the Emaravirus genus along with High Plains wheat mosaic emaravirus, blue palo verde broom virus, and Raspberry leaf blotch emaravirus. Sequence identity values with taxonomically relevant proteins indicate that this represents a new virus species, which we are tentatively naming ti ringspot-associated virus (TiRSaV). TiRSaV-specific reverse transcription PCR assays detected the virus in several experimental herbaceous host species following mechanical inoculation. TiRSaV was also detected in eriophyid mites collected from symptomatic ti plants, which may represent a putative arthropod vector of the virus.


Viruses ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 436 ◽  
Author(s):  
Varvara Maliogka ◽  
Angelantonio Minafra ◽  
Pasquale Saldarelli ◽  
Ana Ruiz-García ◽  
Miroslav Glasa ◽  
...  

Perennial crops, such as fruit trees, are infected by many viruses, which are transmitted through vegetative propagation and grafting of infected plant material. Some of these pathogens cause severe crop losses and often reduce the productive life of the orchards. Detection and characterization of these agents in fruit trees is challenging, however, during the last years, the wide application of high-throughput sequencing (HTS) technologies has significantly facilitated this task. In this review, we present recent advances in the discovery, detection, and characterization of fruit tree viruses and virus-like agents accomplished by HTS approaches. A high number of new viruses have been described in the last 5 years, some of them exhibiting novel genomic features that have led to the proposal of the creation of new genera, and the revision of the current virus taxonomy status. Interestingly, several of the newly identified viruses belong to virus genera previously unknown to infect fruit tree species (e.g., Fabavirus, Luteovirus) a fact that challenges our perspective of plant viruses in general. Finally, applied methodologies, including the use of different molecules as templates, as well as advantages and disadvantages and future directions of HTS in fruit tree virology are discussed.


2014 ◽  
Author(s):  
Laure Frésard ◽  
Sophie Leroux ◽  
Pierre-François Roux ◽  
C Klopp ◽  
Stéphane Fabre ◽  
...  

RNA editing corresponds to a post-transcriptional nucleotide change in the RNA sequence, creating an alternative nucleotide, not present in the DNA sequence. This leads to a diversification of transcription products with potential functional consequences. Two nucleotide substitutions are mainly described in animals, from adenosine to inosine (A-to-I) and from cytidine to uridine (C-to-U). This phenomenon is more and more described in mammals, notably since the availability of next generation sequencing technologies allowing a whole genome screening of RNA-DNA differences. The number of studies recording RNA editing in other vertebrates like chicken are still limited. We chose to use high throughput sequencing technologies to search for RNA editing in chicken, to understand to what extent this phenomenon is conserved in vertebrates. We performed RNA and DNA sequencing from 8 embryos. Being aware of common pitfalls inherent to sequence analyses leading to false positive discovery, we stringently filtered our datasets and found less than 40 reliable candidates. Conservation of particular sites of RNA editing was attested by the presence of 3 edited sites previously detected in mammals. We then characterized editing levels for selected candidates in several tissues and at different time points, from 4.5 days of embryonic development to adults, and observed a clear tissue-specificity and a gradual editing level increase with time. By characterizing the RNA editing landscape in chicken, our results highlight the extent of evolutionary conservation of this phenomenon within vertebrates, and provide support of an absence of non A-to-I events from the chicken transcriptome.


2017 ◽  
Author(s):  
Darrell O. Ricke ◽  
Anna Shcherbina ◽  
Adam Michaleas ◽  
Philip Fremont-Smith

AbstractHigh throughput DNA sequencing technologies enable improved characterization of forensic DNA samples enabling greater insights into DNA contributor(s). Current DNA forensics techniques rely upon allele sizing of short tandem repeats by capillary electrophoresis. High throughput sequencing enables forensic sample characterizations for large numbers of single nucleotide polymorphism loci. The slowest computational component of the DNA forensics analysis pipeline is the characterization of raw sequence data. This paper optimizes the SNP calling module of the DNA analysis pipeline with runtime results that scale linearly with the number of HTS sequences (patent pending)[1]. GrigoraSNPs can analyze 100 million reads in less than 5 minutes using 3 threads on a 4.0 GHz Intel i7-6700K laptop CPU.


2010 ◽  
Vol 76 (10) ◽  
pp. 3206-3219 ◽  
Author(s):  
Francesca Turroni ◽  
Elena Foroni ◽  
Mary O'Connell Motherway ◽  
Francesca Bottacini ◽  
Vanessa Giubellini ◽  
...  

ABSTRACT Members of the serpin (serine protease inhibitor) superfamily have been identified in higher multicellular eukaryotes, as well as in bacteria, although examination of available genome sequences has indicated that homologs of the bacterial serpin-encoding gene (ser) are not widely distributed. In members of the genus Bifidobacterium this gene appears to be present in at least 5, and perhaps up to 9, of the 30 species tested. Moreover, phylogenetic analysis using available bacterial and eukaryotic serpin sequences revealed that bifidobacteria produce serpins that form a separate clade. We characterized the ser 210B locus of Bifidobacterium breve 210B, which encompasses a number of genes whose deduced protein products display significant similarity to proteins encoded by corresponding loci found in several other bifidobacteria. Northern hybridization, primer extension, microarray, reverse transcription-PCR (RT-PCR), and quantitative real-time PCR (qRT-PCR) analyses revealed that a 3.5-kb polycistronic mRNA encompassing the ser 210B operon with a single transcriptional start site is strongly induced following treatment of B. breve 210B cultures with some proteases. Interestingly, transcription of other bifidobacterial ser homologs appears to be triggered by different proteases.


Viruses ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 685 ◽  
Author(s):  
Alfredo Diaz-Lara ◽  
Beatriz Navarro ◽  
Francesco Di Serio ◽  
Kristian Stevens ◽  
Min Sook Hwang ◽  
...  

Two novel negative-stranded (ns)RNA viruses were identified by high throughput sequencing in grapevine. The genomes of both viruses, named grapevine Muscat rose virus (GMRV) and grapevine Garan dmak virus (GGDV), comprise three segments with each containing a unique gene. Based on sequence identity and presence of typical domains/motifs, the proteins encoded by the two viruses were predicted to be: RNA-dependent RNA polymerase (RdRp), nucleocapsid protein (NP), and putative movement protein (MP). These proteins showed the highest identities with orthologs in the recently discovered apple rubbery wood viruses 1 and 2, members of a tentative genus (Rubodvirus) within the family Phenuiviridae. The three segments of GMRV and GGDV share almost identical sequences at their 5′ and 3′ termini, which are also complementary to each other and may form a panhandle structure. Phylogenetics based on RdRp, NP and MP placed GMRV and GGDV in the same cluster with rubodviruses. Grapevine collections were screened for the presence of both novel viruses via RT-PCR, identifying infected plants. GMRV and GGDV were successfully graft-transmitted, thus, they are the first nsRNA viruses identified and transmitted in grapevine. Lastly, different evolutionary scenarios of nsRNA viruses are discussed.


2007 ◽  
Vol 88 (6) ◽  
pp. 1761-1766 ◽  
Author(s):  
E. Nakouné Yandoko ◽  
S. Gribaldo ◽  
C. Finance ◽  
A. Le Faou ◽  
B. H. Rihn

The genus Orthobunyavirus is composed of segmented, negative-sense RNA viruses that are responsible for mild to severe human diseases. To date, no molecular studies of bunyaviruses in the genus Orthobunyavirus from central Africa have been reported, and their classification relies on serological testing. Four new primer pairs for RT-PCR amplification and sequencing of the complete genomic small (S) RNA segments of 10 orthobunyaviruses isolated from the Central African Republic and pertaining to five different serogroups have been designed and evaluated. Phylogenetic analysis showed that these 10 viruses belong to the Bunyamwera serogroup. The S segment sequences differ from those of the Bunyamwera virus reference strain by 5–15 % at the nucleotide level, and both overlapping reading frames, encoding the nucleocapsid (N) and non-structural (NS) proteins, were evident in sequenced genomes. This study should improve diagnosis and surveillance of African bunyaviruses.


2010 ◽  
Vol 5 (5) ◽  
pp. 1934578X1000500 ◽  
Author(s):  
Jens Göpfert ◽  
Anna-Katharina Bülow ◽  
Otmar Spring

Sesquiterpenes and sesquiterpene lactones are major natural compounds found in linear and capitate glandular trichomes of sunflower, Helianthus annuus L. In addition to two recently identified germacrene A synthases HaGAS1 and HaGAS2, found in capitate trichome gland cells, reverse transcription-PCR experiments have now allowed identification of a third enzyme of this type, HaGAS3. Its cDNA sequence was established and its functional characterization as a germacrene A synthase was achieved through in vitro expression in engineered yeast, and by GC-MS experiments. PCR and RT-PCR experiments with cDNA from different plant organs revealed that the new enzyme is expressed independently from the other two. While these latter two were expressed in plant organs bearing capitate glandular trichomes and in roots, the new enzyme occurred in plant tissues not linked to the presence of specific trichomes (for example, cotyledons), and was absent in roots. The experiments show that independently regulated pathways for the first cyclic sesquiterpene, germacrene A, are present in sunflower.


Plant Disease ◽  
2009 ◽  
Vol 93 (10) ◽  
pp. 1065-1072 ◽  
Author(s):  
M. Mnari-Hattab ◽  
N. Gauthier ◽  
A. Zouba

Surveys of yellowing viruses under nonheated and geothermal heated plastic tunnels and in open field crops of melon (Cucumis melo), cucumber (C. sativus), zucchini (Cucurbita pepo), squash (C. maxima), watermelon (Citrullus lanatus), and ware cucurbit (Ecballium elaterium) were carried out year-round during 2000–2001, 2003, and 2004 in the major cucurbit-growing areas in Tunisia. Severe yellowing symptoms on older leaves of cucurbits were observed in open fields and under plastic-tunnel production systems. These yellowing symptoms and large populations of aphids (Aphis gossypii) on a diversity of cucurbit crops in Tunisia support the hypothesis of a viral cause of the disease. Virus identification using double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA), followed by reverse transcription–polymerase chain reaction (RT-PCR) and immunocapture (IC)-RT-PCR showed that Cucurbit aphid-borne yellows virus (CABYV) was largely distributed in melon, cucumber, zucchini, squash, and watermelon crops. Ware cucurbit (E. elaterium) and lettuce (Lactuca sativa) crops were identified as potential CABYV reservoirs. The RT-PCR-amplified partial coat protein (CP) and P4 genes were cloned and sequenced from nine Tunisian CABYV isolates. CP and P4 gene nucleotide and amino acid sequence comparisons as well as phylogenetic reconstructions showed that the Tunisian isolates clustered into two major subgroups. Comparisons with CABYV sequences retrieved from GenBank showed high nucleotide and CP amino acid identities, and close relationships of the Tunisian isolates with Italian and French isolates.


Viruses ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 982 ◽  
Author(s):  
Fránová ◽  
Přibylová ◽  
Koloniuk

Virus diseases of strawberry present several complex problems. More than 25 viruses have been described in the genus Fragaria thus far. Here, we describe a novel rhabdovirus, tentatively named strawberry virus 1 (StrV-1), that infects F. ananassa and F. vesca plants. Genomic sequences of three distinct StrV-1 genotypes co-infecting a single F. ananassa host were obtained using combined Illumina and Ion Proton high-throughput sequencing. StrV-1 was transmitted to herbaceous plants via Aphis fabae and A. ruborum, further mechanically transmitted to Nicotiana occidentalis 37B and sub-inoculated to N. benthamiana, N. benthamiana DCL2/4i, N. occidentalis 37B, and Physalis floridana plants. Irregular chlorotic sectors on leaf blades and the multiplication of calyx leaves seem to be the diagnostic symptoms for StrV-1 on indexed F. vesca clones. StrV-1 was detected in asymptomatic grafted plants and in 49 out of 159 field strawberry samples via RT-PCR followed by Sanger sequencing. The bacilliform shape of the virions, which have a cytoplasm-limited distribution, their size, and phylogenetic relationships support the assignment of StrV-1 to a distinct species of the genus Cytorhabdovirus. Acyrthosiphon malvae, A. fabae, and A. ruborum were shown to transmit StrV-1 under experimental conditions.


Sign in / Sign up

Export Citation Format

Share Document