scholarly journals Identification of minimal sequences of the Rhopalosiphum padi virus 5′ untranslated region required for internal initiation of protein synthesis in mammalian, plant and insect translation systems

2007 ◽  
Vol 88 (5) ◽  
pp. 1583-1588 ◽  
Author(s):  
Elisabetta Groppelli ◽  
Graham J. Belsham ◽  
Lisa O. Roberts

Rhopalosiphum padi virus (RhPV) is a member of the family Dicistroviridae. The genomes of viruses in this family contain two open reading frames, each preceded by distinct internal ribosome entry site (IRES) elements. The RhPV 5′ IRES is functional in mammalian, insect and plant translation systems and can form 48S initiation complexes in vitro with just the mammalian initiation factors eIF2, eIF3 and eIF1. Large regions of the 5′ untranslated region (UTR) can be deleted without affecting initiation-complex formation. The minimal sequences required for directing internal initiation in mammalian (rabbit reticulocyte lysate), plant (wheatgerm extract) and insect (Sf21 cells) translation systems have now been defined. A fragment (nt 426–579) from the 3′ portion of the 5′ UTR can direct translation in each of these translation systems. In addition, a distinct region (nt 300–429) is also active. Thus, unstructured regions within the 5′ UTR seem to be critical for IRES function.

2001 ◽  
Vol 75 (21) ◽  
pp. 10244-10249 ◽  
Author(s):  
Kathryn E. Woolaway ◽  
Konstantinos Lazaridis ◽  
Graham J. Belsham ◽  
Michael J. Carter ◽  
Lisa O. Roberts

ABSTRACT Rhopalosiphum padi virus (RhPV) is one of several picorna-like viruses that infect insects; sequence analysis has revealed distinct differences between these agents and mammalian picornaviruses. RhPV has a single-stranded positive-sense RNA genome of about 10 kb; unlike the genomes of Picornaviridae, however, this genome contains two long open reading frames (ORFs). ORF1 encodes the virus nonstructural proteins, while the downstream ORF, ORF2, specifies the structural proteins. Both ORFs are preceded by long untranslated regions (UTRs). The intergenic UTR is known to contain an internal ribosome entry site (IRES) which directs non-AUG-initiated translation of ORF2. We have examined the 5′ UTR of RhPV for IRES activity by translating synthetic dicistronic mRNAs containing this sequence in a variety of systems. We now report that the 5′ UTR contains an element which directs internal initiation of protein synthesis from an AUG codon in mammalian, plant, andDrosophila in vitro translation systems. In contrast, the encephalomyocarditis virus IRES functions only in the mammalian system. The RhPV 5′ IRES element has features in common with picornavirus IRES elements, in that no coding sequence is required for IRES function, but also with cellular IRES elements, as deletion analysis indicates that this IRES element does not have sharply defined boundaries.


2006 ◽  
Vol 87 (12) ◽  
pp. 3679-3686 ◽  
Author(s):  
Norihiro Shibuya ◽  
Nobuhiko Nakashima

The RNA genome of Plautia stali intestine virus (PSIV; Cripavirus, Dicistroviridae) contains two open reading frames, the first of which is preceded by a 570 nt untranslated region (5′ UTR). The 5′ UTR was confirmed to be an internal ribosome entry site (IRES) using an insect cell lysate translation system: translation of a second cistron increased 14-fold in the presence of the 5′ UTR and a cap analogue did not inhibit translation of the second cistron. Deletion analysis showed that 349 bases corresponding to nt 225–573 in the PSIV genome were necessary for internal initiation. The PSIV 5′ IRES did not function in rabbit reticulocyte lysate or wheatgerm translation systems; however, the intergenic IRES for capsid translation of PSIV was functional in both systems, indicating that the 5′ IRES and the intergenic IRES have distinct requirements for their activities. Chemical and enzymic analyses of the 5′ IRES of PSIV indicate that its structure is distinct from that of Rhopalosiphum padi virus. Because 5′ IRES elements in some dicistroviruses have been reported to be active in plant and mammalian cell-free translation systems, there appears to be variation among dicistroviruses in the mechanism of translation initiation mediated by 5′ IRES elements.


2006 ◽  
Vol 87 (12) ◽  
pp. 3667-3677 ◽  
Author(s):  
Jie Lu ◽  
Jiamin Zhang ◽  
Xiaochun Wang ◽  
Hong Jiang ◽  
Chuanfeng Liu ◽  
...  

Ectropis obliqua picorna-like virus (EoPV) is a newly described insect virus that is classified as a putative member of the genus Iflavirus. The virus possesses a large, positive-sense RNA genome encoding a single polyprotein that shares physicochemical properties with those of members of the family Picornaviridae. The 5′ untranslated region (5′ UTR) plays an important role in picornavirus translation initiation, as it contains an internal ribosome entry site (IRES) that mediates cap-independent translation. To investigate translation in EoPV, an extensive range of mutations were engineered within the 5′ UTR and the effects of these changes were examined in vitro and in vivo by using a bicistronic construct. Results showed that deletions within the first 63 nt had little impact on IRES activity, whilst core IRES function was contained within stem–loops C and D, as their removal abrogated IRES activity significantly. In contrast to these findings, removal of stem–loop G containing two cryptic AUGs caused a remarkable increase in IRES activity, which was further investigated by site-directed mutagenesis at these two positions. It was also confirmed that initiation of protein synthesis occurs at AUG6 (position 391–394) and not at the AUG immediately downstream of the polypyrimidine tract. Mutation of the polypyrimidine tract (CCTTTC) had a slight effect on EoPV IRES activity. Furthermore, mutations of the RAAA motif led to a decrease in IRES activity of approximately 40 % in vitro, but these results were not supported by in vivo experiments. In conclusion, this study reveals that the EoPV IRES element is unique, although it has features in common with the type II IRESs.


2007 ◽  
Vol 27 (13) ◽  
pp. 4685-4697 ◽  
Author(s):  
Sergey E. Dmitriev ◽  
Dmitri E. Andreev ◽  
Ilya M. Terenin ◽  
Ivan A. Olovnikov ◽  
Vladimir S. Prassolov ◽  
...  

ABSTRACT Retrotransposon L1 is a mobile genetic element of the LINE family that is extremely widespread in the mammalian genome. It encodes a dicistronic mRNA, which is exceptionally rare among eukaryotic cellular mRNAs. The extremely long and GC-rich L1 5′ untranslated region (5′UTR) directs synthesis of numerous copies of RNA-binding protein ORF1p per mRNA. One could suggest that the 5′UTR of L1 mRNA contained a powerful internal ribosome entry site (IRES) element. Using transfection of cultured cells with the polyadenylated monocistronic (L1 5′UTR-Fluc) or bicistronic (Rluc-L1 5′UTR-Fluc) RNA constructs, capped or uncapped, it has been firmly established that the 5′UTR of L1 does not contain an IRES. Uncapping reduces the initiation activity of the L1 5′UTR to that of background. Moreover, the translation is inhibited by upstream AUG codons in the 5′UTR. Nevertheless, this cap-dependent initiation activity of the L1 5′UTR was unexpectedly high and resembles that of the beta-actin 5′UTR (84 nucleotides long). Strikingly, the deletion of up to 80% of the nucleotide sequence of the L1 5′UTR, with most of its stem loops, does not significantly change its translation initiation efficiency. These data can modify current ideas on mechanisms used by 40S ribosomal subunits to cope with complex 5′UTRs and call into question the conception that every long GC-rich 5′UTR working with a high efficiency has to contain an IRES. Our data also demonstrate that the ORF2 translation initiation is not directed by internal initiation, either. It is very inefficient and presumably based on a reinitiation event.


2020 ◽  
Vol 48 (18) ◽  
pp. 10441-10455
Author(s):  
Risa Nobuta ◽  
Kodai Machida ◽  
Misaki Sato ◽  
Satoshi Hashimoto ◽  
Yasuhito Toriumi ◽  
...  

Abstract Comprehensive genome-wide analysis has revealed the presence of translational elements in the 3′ untranslated regions (UTRs) of human transcripts. However, the mechanisms by which translation is initiated in 3′ UTRs and the physiological function of their products remain unclear. This study showed that eIF4G drives the translation of various downstream open reading frames (dORFs) in 3′ UTRs. The 3′ UTR of GCH1, which encodes GTP cyclohydrolase 1, contains an internal ribosome entry site (IRES) that initiates the translation of dORFs. An in vitro reconstituted translation system showed that the IRES in the 3′ UTR of GCH1 required eIF4G and conventional translation initiation factors, except eIF4E, for AUG-initiated translation of dORFs. The 3′ UTR of GCH1-mediated translation was resistant to the mTOR inhibitor Torin 1, which inhibits cap-dependent initiation by increasing eIF4E-unbound eIF4G. eIF4G was also required for the activity of various elements, including polyU and poliovirus type 2, a short element thought to recruit ribosomes by base-pairing with 18S rRNA. These findings indicate that eIF4G mediates translation initiation of various ORFs in mammalian cells, suggesting that the 3′ UTRs of mRNAs may encode various products.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Craig H. Kerr ◽  
Zi Wang Ma ◽  
Christopher J. Jang ◽  
Sunnie R. Thompson ◽  
Eric Jan

Abstract The dicistrovirus Cricket Paralysis virus contains a unique dicistronic RNA genome arrangement, encoding two main open reading frames that are driven by distinct internal ribosome entry sites (IRES). The intergenic region (IGR) IRES adopts an unusual structure that directly recruits the ribosome and drives translation of viral structural proteins in a factor-independent manner. While structural, biochemical, and biophysical approaches have provided mechanistic details into IGR IRES translation, these studies have been limited to in vitro systems and little is known about the behavior of these IRESs during infection. Here, we examined the role of previously characterized IGR IRES mutations on viral yield and translation in CrPV-infected Drosophila S2 cells. Using a recently generated infectious CrPV clone, introduction of a subset of mutations that are known to disrupt IRES activity failed to produce virus, demonstrating the physiological relevance of specific structural elements within the IRES for virus infection. However, a subset of mutations still led to virus production, thus revealing the key IRES-ribosome interactions for IGR IRES translation in infected cells, which highlights the importance of examining IRES activity in its physiological context. This is the first study to examine IGR IRES translation in its native context during virus infection.


2005 ◽  
Vol 25 (17) ◽  
pp. 7879-7888 ◽  
Author(s):  
Ilya M. Terenin ◽  
Sergei E. Dmitriev ◽  
Dmitri E. Andreev ◽  
Elizabeth Royall ◽  
Graham J. Belsham ◽  
...  

ABSTRACT Rhopalosiphum padi virus (RhPV) is an insect virus of the Dicistroviridae family. Recently, the 579-nucleotide-long 5′ untranslated region (UTR) of RhPV has been shown to contain an internal ribosome entry site (IRES) that functions efficiently in mammalian, plant, and insect in vitro translation systems. Here, the mechanism of action of the RhPV IRES has been characterized by reconstitution of mammalian 48S initiation complexes on the IRES from purified components combined with the toeprint assay. There is an absolute requirement for the initiation factors eIF2 and eIF3 and the scanning factor eIF1 to form 48S complexes on the IRES. In addition, eIF1A, eIF4F (or the C-terminal fragment of eIF4G), and eIF4A strongly stimulated the assembly of this complex, whereas eIF4B had no effect. Although the eIF4-dependent pathway is dominant in the RhPV IRES-directed cell-free translation, omission of either eIF4G or eIF4A or both still allowed the assembly of 48S complexes from purified components with ∼23% of maximum efficiency. Deletions of up to 100 nucleotides throughout the 5′-UTR sequence produced at most a marginal effect on the IRES activity, suggesting the absence of specific binding sites for initiation factors. Only deletion of the U-rich unstructured 380-nucleotide region proximal to the initiation codon resulted in a complete loss of the IRES activity. We suggest that the single-stranded nature of the RhPV IRES accounts for its strong but less selective potential to bind key mRNA recruiting components of the translation initiation apparatus from diverse origins.


2002 ◽  
Vol 76 (10) ◽  
pp. 5024-5033 ◽  
Author(s):  
Simon P. Fletcher ◽  
Richard J. Jackson

ABSTRACT The importance of certain structural features of the 5′ untranslated region of classical swine fever virus (CSFV) RNA for the function of the internal ribosome entry site (IRES) was investigated by mutagenesis followed by in vitro transcription and translation. Deletions made from the 5′ end of the CSFV genome sequence showed that the IRES boundary was close to nucleotide 65: thus, the IRES includes the whole of domain II but no sequences upstream of this domain. Deletions which invaded domain II even to a small extent reduced activity to about 20% that of the full-length structure, and this 20% residual activity persisted with more extensive deletions until the whole of domain II had been removed and the deletions invaded the pseudoknot, whereupon IRES activity fell to zero. The importance of both stems of the pseudoknot was verified by making mutations in both sides of each stem; this severely reduced IRES activity, but the compensating mutations which restored base pairing caused almost full IRES function to be regained. The importance of the length of the loop linking the two stems of the pseudoknot was demonstrated by the finding that a reduction in length from the wild-type AUAAAAUU to AUU almost completely abrogated IRES activity. Random A→U substitutions in the wild-type sequence showed that IRES activity was fairly proportional to the number of A residues retained in this pseudoknot loop, with a preference for clustered neighboring A residues rather than dispersed As. Finally, it was found that the sequence of the highly conserved domain IIIa loop is, rather surprisingly, not important for the maintenance of full IRES activity, although amputation of the entire domain IIIa stem and loop was highly debilitating. These results are interpreted in the light of recent models, derived from cryo-electron microscopy, of the interaction of the closely related hepatitis C virus IRES with 40S ribosomal subunits.


2019 ◽  
Author(s):  
Stuart Sims ◽  
Kevin Michaelsen ◽  
Sara Burkhard ◽  
Cornel Fraefel

AbstractThe 5’ untranslated region (5’ UTR) of rodent hepacivirus (RHV) and pegivirus (RPgV) contain sequence homology to the HCV type IV internal ribosome entry sites (IRES). Utilizing a monocistronic expression vector with an RNA polymerase I promoter to drive transcription we show cell-specific IRES translation and regions within the IRES required for full functionality. Focusing on RHV we further pseudotyped lentivirus with RHV and showed cell surface expression of the envelope proteins and transduction of murine hepatocytes.


Sign in / Sign up

Export Citation Format

Share Document