scholarly journals Efficient Translation Initiation Directed by the 900-Nucleotide-Long and GC-Rich 5′ Untranslated Region of the Human Retrotransposon LINE-1 mRNA Is Strictly Cap Dependent Rather than Internal Ribosome Entry Site Mediated

2007 ◽  
Vol 27 (13) ◽  
pp. 4685-4697 ◽  
Author(s):  
Sergey E. Dmitriev ◽  
Dmitri E. Andreev ◽  
Ilya M. Terenin ◽  
Ivan A. Olovnikov ◽  
Vladimir S. Prassolov ◽  
...  

ABSTRACT Retrotransposon L1 is a mobile genetic element of the LINE family that is extremely widespread in the mammalian genome. It encodes a dicistronic mRNA, which is exceptionally rare among eukaryotic cellular mRNAs. The extremely long and GC-rich L1 5′ untranslated region (5′UTR) directs synthesis of numerous copies of RNA-binding protein ORF1p per mRNA. One could suggest that the 5′UTR of L1 mRNA contained a powerful internal ribosome entry site (IRES) element. Using transfection of cultured cells with the polyadenylated monocistronic (L1 5′UTR-Fluc) or bicistronic (Rluc-L1 5′UTR-Fluc) RNA constructs, capped or uncapped, it has been firmly established that the 5′UTR of L1 does not contain an IRES. Uncapping reduces the initiation activity of the L1 5′UTR to that of background. Moreover, the translation is inhibited by upstream AUG codons in the 5′UTR. Nevertheless, this cap-dependent initiation activity of the L1 5′UTR was unexpectedly high and resembles that of the beta-actin 5′UTR (84 nucleotides long). Strikingly, the deletion of up to 80% of the nucleotide sequence of the L1 5′UTR, with most of its stem loops, does not significantly change its translation initiation efficiency. These data can modify current ideas on mechanisms used by 40S ribosomal subunits to cope with complex 5′UTRs and call into question the conception that every long GC-rich 5′UTR working with a high efficiency has to contain an IRES. Our data also demonstrate that the ORF2 translation initiation is not directed by internal initiation, either. It is very inefficient and presumably based on a reinitiation event.

2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Encarnación Martínez-Salas ◽  
David Piñeiro ◽  
Noemí Fernández

The composition of the cellular proteome is under the control of multiple processes, one of the most important being translation initiation. The majority of eukaryotic cellular mRNAs initiates translation by the cap-dependent or scanning mode of translation initiation, a mechanism that depends on the recognition of the m7G(5′)ppp(5′)N, known as the cap. However, mRNAs encoding proteins required for cell survival under stress bypass conditions inhibitory to cap-dependent translation; these mRNAs often harbor internal ribosome entry site (IRES) elements in their 5′UTRs that mediate internal initiation of translation. This mechanism is also exploited by mRNAs expressed from the genome of viruses infecting eukaryotic cells. In this paper we discuss recent advances in understanding alternative ways to initiate translation across eukaryotic organisms.


2008 ◽  
Vol 19 (9) ◽  
pp. 3812-3822 ◽  
Author(s):  
Chiu-Hung Yeh ◽  
Liang-Yi Hung ◽  
Chin Hsu ◽  
Shu-Yun Le ◽  
Pin-Tse Lee ◽  
...  

Reduction in host-activated protein C levels and resultant microvascular thrombosis highlight the important functional role of protein C anticoagulant system in the pathogenesis of sepsis and septic shock. Thrombomodulin (TM) is a critical factor to activate protein C in mediating the anticoagulation and anti-inflammation effects. However, TM protein content is decreased in inflammation and sepsis, and the mechanism is still not well defined. In this report, we identified that the TM 5′ untranslated region (UTR) bearing the internal ribosome entry site (IRES) element controls TM protein expression. Using RNA probe pulldown assay, HuR was demonstrated to interact with the TM 5′UTR. Overexpression of HuR protein inhibited the activity of TM IRES, whereas on the other hand, reducing the HuR protein level reversed this effect. When cells were treated with IL-1β, the IRES activity was suppressed and accompanied by an increased interaction between HuR and TM 5′UTR. In the animal model of sepsis, we found the TM protein expression level to be decreased while concurrently observing the increased interaction between HuR and TM mRNA in liver tissue. In summary, HuR plays an important role in suppression of TM protein synthesis in IL-1β treatment and sepsis.


2008 ◽  
Vol 36 (4) ◽  
pp. 694-697 ◽  
Author(s):  
Eugenia S. Mardanova ◽  
Ludmila A. Zamchuk ◽  
Nikolai V. Ravin

A broad range of cellular stresses lead to the inhibition of translation. Despite this, some cellular mRNAs are selectively translated under these conditions. It is widely supposed that cap-independent internal initiation may maintain efficient translation of particular cellular mRNAs under a variety of stresses and other special conditions when cap-dependent protein synthesis is impaired. However, in spite of a large number of reports focused on the investigation of the regulation of IRES (internal ribosome entry site) activity in different tissues and under various stresses, only rarely is the real efficiency of IRES-driven translation in comparison with cap-dependent translation evaluated. When precisely measured, the efficiencies of candidate IRESs in most cases appeared to be very low and not sufficient to compensate for the reduction of cap-dependent initiation under stresses. The usually low efficiency of internal initiation of translation is inconsistent with postulated biological roles of IRESs.


2006 ◽  
Vol 80 (14) ◽  
pp. 6936-6942 ◽  
Author(s):  
Melinda K. Merrill ◽  
Matthias Gromeier

ABSTRACT Poliovirus (PV) plus-strand RNA genomes initiate translation in a cap-independent manner via an internal ribosome entry site (IRES) in their 5′ untranslated region. Viral translation is codetermined by cellular IRES trans-acting factors, which can influence viral propagation in a cell-type-specific manner. Engineering of a poliovirus recombinant devoid of neuropathogenic properties but highly lytic in malignant glioma cells was accomplished by exchange of the cognate poliovirus IRES with its counterpart from human rhinovirus type 2 (HRV2), generating PV-RIPO. Neuroblast:glioma heterokaryon analyses revealed that loss of neurovirulence is due to trans-dominant repression of PV-RIPO propagation in neuronal cells. The double-stranded RNA binding protein 76 (DRBP76) was previously identified to bind to the HRV2 IRES in neuronal cells and to inhibit PV-RIPO translation and propagation (M. Merrill, E. Dobrikova, and M. Gromeier, J. Virol. 80:3347-3356, 2006). The results of size exclusion chromatography indicate that DRBP76 heterodimerizes with nuclear factor of activated T cells, 45 kDa (NF45), in neuronal but not in glioma cells. The DRBP76:NF45 heterodimer binds to the HRV2 IRES in neuronal but not in glioma cells. Ribosomal profile analyses show that the heterodimer preferentially associates with the translation apparatus in neuronal cells and arrests translation at the HRV2 IRES, preventing PV-RIPO RNA assembly into polysomes. Results of this study suggest that the DRBP76:NF45 heterodimer selectively blocks HRV2 IRES-driven translation initiation in neuron-derived cells.


1995 ◽  
Vol 15 (1) ◽  
pp. 35-44 ◽  
Author(s):  
S Vagner ◽  
M C Gensac ◽  
A Maret ◽  
F Bayard ◽  
F Amalric ◽  
...  

Alternative initiations of translation of the human fibroblast growth factor 2 (FGF-2) mRNA, at three CUG start codons and one AUG start codon, result in the synthesis of four isoforms of FGF-2. This process has important consequences on the fate of FGF-2: the CUG-initiated products are nuclear and their constitutive expression is able to induce cell immortalization, whereas the AUG-initiated product, mostly cytoplasmic, can generate cell transformation. Thus, the different isoforms probably have distinct targets in the cell. We show here that translation initiation of the FGF-2 mRNA breaks the rule of the cap-dependent ribosome scanning mechanism. First, translation of the FGF-2 mRNA was shown to be cap independent in vitro. This cap-independent translation required a sequence located between nucleotides (nt) 192 and 256 from the 5' end of the 318-nt-long 5' untranslated region. Second, expression of bicistronic vectors in COS-7 cells indicated that the FGF-2 mRNA is translated through a process of internal ribosome entry mediated by the mRNA leader sequence. By introducing additional AUG codons into the RNA leader sequence, we localized an internal ribosome entry site to between nt 154 and 318 of the 5' untranslated region, just upstream of the first CUG. The presence of an internal ribosome entry site in the FGF-2 mRNA suggests that the process of internal translation initiation, by controlling the expression of a growth factor, could have a crucial role in the control of cell proliferation and differentiation.


2007 ◽  
Vol 88 (11) ◽  
pp. 3043-3052 ◽  
Author(s):  
Emma C. Anderson ◽  
Sarah L. Hunt ◽  
Richard J. Jackson

Internal initiation of translation from the human rhinovirus-2 (HRV-2) internal ribosome entry site (IRES) is dependent upon host cell trans-acting factors. The multiple cold shock domain protein Unr and the polypyrimidine tract-binding protein have been identified as synergistic activators of HRV-2 IRES-driven translation. In order to investigate the mechanism by which Unr acts in this process, we have mapped the binding sites of Unr to two distinct secondary structure domains of the HRV-2 IRES, and have identified specific nucleotides that are involved in the binding of Unr to the IRES. The data suggest that Unr acts as an RNA chaperone to maintain a complex tertiary IRES structure required for translational competency.


2018 ◽  
Vol 93 (5) ◽  
Author(s):  
Helena Jaramillo-Mesa ◽  
Megan Gannon ◽  
Elijah Holshbach ◽  
Jincan Zhang ◽  
Robyn Roberts ◽  
...  

ABSTRACTSeveral viruses encode an internal ribosome entry site (IRES) at the 5′ end of their RNA, which, unlike most cellular mRNAs, initiates translation in the absence of a 5′ m7GpppG cap. Here, we report a uniquely regulated translation enhancer found in the 739-nucelotide (nt) sequence of the Triticum mosaic virus (TriMV) leader sequence that distinguishes the preferred initiation site from a plethora of IRES-encoded AUG triplets. Through deletion mutations of the TriMV 5′ untranslated region (UTR), we show that the TriMV 5′ UTR encodes acis-acting picornaviral Y16-X11-AUG-like motif with a 16-nt polypyrimidine CU-tract (Y16), at a precise, 11-nt distance (X11) from the preferred 13th AUG. Phylogenetic analyses indicate that this motif is conserved among potyviral leader sequences with multiple AUGs. Consistent with a broadly conserved mechanism, the motif could be functionally replaced with known picornavirus YX-AUG motifs and is predicted to function as target sites for the 18S rRNA by direct base pairing. Accordingly, mutations that disrupted overall complementarity to the 18S rRNA markedly reduced TriMV IRES activity, as did the delivery of antisense oligonucleotides designed to block YX-AUG accessibility. To our knowledge, this is the first report of a plant viral IRES YX-AUG motif, and our findings suggest that a conserved mechanism regulates translation for multiple economically important plant and animal positive single-stranded RNA viruses.IMPORTANCEUncapped viral RNAs often rely on their 5′ leader sequences to initiate translation, and the Triticum mosaic virus (TriMV) devotes an astonishing 7% of its genome to directing ribosomes to the correct AUG. Here we uncover a novel mechanism by which a TriMVcis-regulatory element controls cap-independent translation. The upstream region of the functional AUG contains a 16-nt polypyrimidine tract located 11 nt from the initiation site. Based on functional redundancy with similar motifs derived from human picornaviruses, the motif is likely to operate by directing ribosome targeting through base pairing with 18S rRNA. Our results provide the first report of a broad-spectrum mechanism regulating translation initiation for both plant- and animal-hosted picornaviruses.


Sign in / Sign up

Export Citation Format

Share Document