scholarly journals eIF4G-driven translation initiation of downstream ORFs in mammalian cells

2020 ◽  
Vol 48 (18) ◽  
pp. 10441-10455
Author(s):  
Risa Nobuta ◽  
Kodai Machida ◽  
Misaki Sato ◽  
Satoshi Hashimoto ◽  
Yasuhito Toriumi ◽  
...  

Abstract Comprehensive genome-wide analysis has revealed the presence of translational elements in the 3′ untranslated regions (UTRs) of human transcripts. However, the mechanisms by which translation is initiated in 3′ UTRs and the physiological function of their products remain unclear. This study showed that eIF4G drives the translation of various downstream open reading frames (dORFs) in 3′ UTRs. The 3′ UTR of GCH1, which encodes GTP cyclohydrolase 1, contains an internal ribosome entry site (IRES) that initiates the translation of dORFs. An in vitro reconstituted translation system showed that the IRES in the 3′ UTR of GCH1 required eIF4G and conventional translation initiation factors, except eIF4E, for AUG-initiated translation of dORFs. The 3′ UTR of GCH1-mediated translation was resistant to the mTOR inhibitor Torin 1, which inhibits cap-dependent initiation by increasing eIF4E-unbound eIF4G. eIF4G was also required for the activity of various elements, including polyU and poliovirus type 2, a short element thought to recruit ribosomes by base-pairing with 18S rRNA. These findings indicate that eIF4G mediates translation initiation of various ORFs in mammalian cells, suggesting that the 3′ UTRs of mRNAs may encode various products.

2010 ◽  
Vol 84 (18) ◽  
pp. 9472-9486 ◽  
Author(s):  
Lora Grainger ◽  
Louis Cicchini ◽  
Michael Rak ◽  
Alex Petrucelli ◽  
Kerry D. Fitzgerald ◽  
...  

ABSTRACT We have previously characterized a 21-kDa protein encoded by UL138 (pUL138) as a viral factor inherent to low-passage strains of human cytomegalovirus (HCMV) that is required for latent infection in vitro. pUL138 is encoded on 3.6-, 2.7-, and 1.4-kb 3′ coterminal transcripts that are produced during productive and latent infections. pUL138 is encoded at the 3′ end of each transcript and is preceded by an extensive 5′ sequence (∼0.5 to 2.5 kb) containing several putative open reading frames (ORFs). We determined that three putative ORFs upstream of UL138 (UL133, UL135, and UL136) encode proteins. The UL138 transcripts are polycistronic, such that each transcript expresses pUL138 in addition to the most-5′ ORF. The upstream coding sequences (CDS) present a significant challenge for the translation of pUL138 in mammalian cells. We hypothesized that sequences 5′ of UL138 mediate translation initiation of pUL138 by alternative strategies. Accordingly, a 663-nucloetide (nt) sequence overlapping the UL136 CDS supported expression of a downstream cistron in a bicistronic reporter system. We did not detect cryptic promoter activity or RNA splicing events that could account for downstream cistron expression. These data are consistent with the sequence element functioning as an internal ribosome entry site (IRES). Interestingly, pUL138 expression from the 3.6- and 2.7-kb transcripts was induced by serum stress, which concomitantly inhibited normal cap-dependent translation. Our work suggests that an alternative and stress-inducible strategy of translation initiation ensures expression of pUL138 under a variety of cellular contexts. The UL138 polycistronic transcripts serve to coordinate the expression of multiple proteins, including a viral determinant of HCMV latency.


2002 ◽  
Vol 76 (5) ◽  
pp. 2062-2074 ◽  
Author(s):  
N. Muge Kuyumcu-Martinez ◽  
Michelle Joachims ◽  
Richard E. Lloyd

ABSTRACT Poliovirus (PV) causes a rapid and drastic inhibition of host cell cap-dependent protein synthesis during infection while preferentially allowing cap-independent translation of its own genomic RNA via an internal ribosome entry site element. Inhibition of cap-dependent translation is partly mediated by cleavage of an essential translation initiation factor, eIF4GI, during PV infection. In addition to cleavage of eIF4GI, cleavage of eIF4GII and poly(A)-binding protein (PABP) has been recently proposed to contribute to complete host translation shutoff; however, the relative importance of eIF4GII and PABP cleavage has not been determined. At times when cap-dependent translation is first blocked during infection, only 25 to 35% of the total cellular PABP is cleaved; therefore, we hypothesized that the pool of PABP associated with polysomes may be preferentially targeted by viral proteases. We have investigated what cleavage products of PABP are produced in vivo and the substrate determinants for cleavage of PABP by 2A protease (2Apro) or 3C protease (3Cpro). Our results show that PABP in ribosome-enriched fractions is preferentially cleaved in vitro and in vivo compared to PABP in other fractions. Furthermore, we have identified four N-terminal PABP cleavage products produced during PV infection and have shown that viral 3C protease generates three of the four cleavage products. Also, 3Cpro is more efficient in cleaving PABP in ribosome-enriched fractions than 2Apro in vitro. In addition, binding of PABP to poly(A) RNA stimulates 3Cpro-mediated cleavage and inhibits 2Apro-mediated cleavage. These results suggest that 3Cpro plays a major role in processing PABP during virus infection and that the interaction of PABP with translation initiation factors, ribosomes, or poly(A) RNA may promote its cleavage by viral 2A and 3C proteases.


2002 ◽  
Vol 76 (22) ◽  
pp. 11721-11728 ◽  
Author(s):  
Yoshihiro Kaku ◽  
Louisa S. Chard ◽  
Toru Inoue ◽  
Graham J. Belsham

ABSTRACT The teschoviruses constitute a recently defined picornavirus genus. Most of the genome sequence of the porcine teschovirus-1 (PTV) Talfan and several other strains is known. We now demonstrate that initiation of protein synthesis occurs at nucleotide (nt) 412 on the PTV Talfan RNA and that nt 1 to 405 contains an internal ribosome entry site (IRES) that functions efficiently in vitro and within mammalian cells. In comparison with other picornavirus IRES elements, the PTV IRES is relatively short and lacks a significant polypyrimidine tract near the 3′ end. Expression of an enterovirus 2A protease, which induces cleavage of eIF4G within the translation initiation complex eIF4F, has little effect on the PTV IRES activity within BHK cells. The PTV IRES has a unique set of properties and represents a new class of picornavirus IRES element.


2019 ◽  
Author(s):  
Jinfan Wang ◽  
Alex G. Johnson ◽  
Christopher P. Lapointe ◽  
Junhong Choi ◽  
Arjun Prabhakar ◽  
...  

Translation initiation determines both the quantity and identity of the protein product by establishing the reading frame for protein synthesis. In eukaryotic cells, numerous translation initiation factors (eIFs) prepare ribosomes for polypeptide elongation, yet the underlying dynamics of this process remain enigmatic1–4. A central question is how eukaryotic ribosomes transition from translation initiation to elongation. Here, we applied in vitro single-molecule fluorescence microscopy approaches to monitor directly in real time the pathways of late translation initiation and the transition to elongation using a purified yeast Saccharomyces cerevisiae translation system. This transition was remarkably slower in our eukaryotic system than that reported for Escherichia coli5–7. The slow entry to elongation was defined by a long residence time of eIF5B on the 80S ribosome after joining of individual ribosomal subunits, which is catalyzed by this universally conserved initiation factor. Inhibition of eIF5B GTPase activity following subunit joining prevented eIF5B dissociation from the 80S complex, thereby preventing elongation. Our findings illustrate how eIF5B dissociation serves as a kinetic checkpoint for the transition from initiation to elongation, and its release may be governed by a conformation of the ribosome complex that triggers GTP hydrolysis.


2001 ◽  
Vol 82 (4) ◽  
pp. 757-763 ◽  
Author(s):  
Lanja Saleh ◽  
René C. Rust ◽  
Ralf Füllkrug ◽  
Ewald Beck ◽  
Gergis Bassili ◽  
...  

In the life-cycle of picornaviruses, the synthesis of the viral polyprotein is initiated cap-independently at the internal ribosome entry site (IRES) far downstream from the 5′ end of the viral plus-strand RNA. The cis-acting IRES RNA elements serve as binding sites for translation initiation factors that guide the ribosomes to an internal site of the viral RNA. In this study, we show that the eukaryotic translation initiation factor eIF4G interacts directly with the IRES of foot-and-mouth disease virus (FMDV). eIF4G binds mainly to the large Y-shaped stem–loop 4 RNA structure in the 3′ region of the FMDV IRES element, whereas stem–loop 5 contributes only slightly to eIF4G binding. Two subdomains of stem–loop 4 are absolutely essential for eIF4G binding, whereas another subdomain contributes to a lesser extent to binding of eIF4G. At the functional level, the translational activity of stem–loop 4 subdomain mutants correlates with the efficiency of binding of eIF4G in the UV cross-link assay. This indicates that the interaction of eIF4G with the IRES is crucial for the initiation of FMDV translation. A model for the interaction of initiation factors with the IRES element is discussed.


2018 ◽  
Author(s):  
Marina Volegova ◽  
Jamie H.D. Cate

AbstractImproper regulation of translation initiation, a vital check-point of protein synthesis in the cell, has been linked to a number of cancers. Overexpression of protein subunits of eukaryotic translation initiation factor 3 (eIF3) has been associated with increased translation of mRNAs involved in cell proliferation. In addition to playing a major role in general translation initiation by serving as a scaffold for the assembly of translation initiation complexes, eIF3 regulates translation of specific cellular mRNAs and viral RNAs. Mutations in the N-terminal Helix-Loop-Helix (HLH) RNA-binding motif of the EIF3A subunit in eIF3 interfere with Hepatitis C Virus Internal Ribosome Entry Site (IRES) mediated translation initiationin vitro. Here we show that the EIF3A HLH motif controls translation of a small set of cellular transcripts enriched in oncogenic mRNAs, includingMYC. We also demonstrate that the HLH motif of EIF3A acts specifically on the 5’-UTR ofMYCmRNA and modulates the function of EIF4A1 on select transcripts during translation initiation. In Ramos lymphoma cell lines, which are dependent on MYC overexpression, mutations in the HLH motif greatly reduce MYC expression, impede proliferation and sensitize cells to anti-cancer compounds. These results reveal the potential of the EIF3A HLH motif in eIF3 as a promising chemotherapeutic target.SummaryThe Helix Loop Helix motif of EIF3A controls translation of a small set of oncogenic cellular transcripts, includingMYC, and modulates the function of translation initiation factor EIF4A1 during translation initiation on select mRNAs.


1999 ◽  
Vol 73 (2) ◽  
pp. 1219-1226 ◽  
Author(s):  
Jun Sasaki ◽  
Nobuhiko Nakashima

ABSTRACT AUG-unrelated translation initiation was found in an insect picorna-like virus, Plautia stali intestine virus (PSIV). The positive-strand RNA genome of the virus contains two nonoverlapping open reading frames (ORFs). The capsid protein gene is located in the 3′-proximal ORF and lacks an AUG initiation codon. We examined the translation mechanism and the initiation codon of the capsid protein gene by using various dicistronic and monocistronic RNAs in vitro. The capsid protein gene was translated cap independently in the presence of the upstream cistron, indicating that the gene is translated by internal ribosome entry. Deletion analysis showed that the internal ribosome entry site (IRES) consisted of approximately 250 bases and that its 3′ boundary extended slightly into the capsid-coding region. The initiation codon for the IRES-mediated translation was identified as the CUU codon, which is located just upstream of the 5′ terminus of the capsid-coding region by site-directed mutagenesis. In vitro translation assays of monocistronic RNAs lacking the 5′ part of the IRES showed that this CUU codon was not recognized by scanning ribosomes. This suggests that the PSIV IRES can effectively direct translation initiation without stable codon-anticodon pairing between the initiation codon and the initiator methionyl-tRNA.


2020 ◽  
Vol 49 (D1) ◽  
pp. D236-D242 ◽  
Author(s):  
Wendi Huang ◽  
Yunchao Ling ◽  
Sirui Zhang ◽  
Qiguang Xia ◽  
Ruifang Cao ◽  
...  

Abstract TransCirc (https://www.biosino.org/transcirc/) is a specialized database that provide comprehensive evidences supporting the translation potential of circular RNAs (circRNAs). This database was generated by integrating various direct and indirect evidences to predict coding potential of each human circRNA and the putative translation products. Seven types of evidences for circRNA translation were included: (i) ribosome/polysome binding evidences supporting the occupancy of ribosomes onto circRNAs; (ii) experimentally mapped translation initiation sites on circRNAs; (iii) internal ribosome entry site on circRNAs; (iv) published N-6-methyladenosine modification data in circRNA that promote translation initiation; (v) lengths of the circRNA specific open reading frames; (vi) sequence composition scores from a machine learning prediction of all potential open reading frames; (vii) mass spectrometry data that directly support the circRNA encoded peptides across back-splice junctions. TransCirc provides a user-friendly searching/browsing interface and independent lines of evidences to predicte how likely a circRNA can be translated. In addition, several flexible tools have been developed to aid retrieval and analysis of the data. TransCirc can serve as an important resource for investigating the translation capacity of circRNAs and the potential circRNA-encoded peptides, and can be expanded to include new evidences or additional species in the future.


Sign in / Sign up

Export Citation Format

Share Document