scholarly journals Chronic-Alcohol-Abuse-Induced Oxidative Stress in the Development of Acute Respiratory Distress Syndrome

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Yan Liang ◽  
Samantha M. Yeligar ◽  
Lou Ann S. Brown

Chronic alcohol ingestion increases the risk of developing acute respiratory distress syndrome (ARDS), a severe form of acute lung injury, characterized by alveolar epithelial and endothelial barrier disruption and intense inflammation. Alcohol abuse is also associated with a higher incidence of sepsis or pneumonia resulting in a higher rate of admittance to intensive care, longer inpatient stays, higher healthcare costs, and a 2–4 times greater mortality rate. Chronic alcohol ingestion induced severe oxidative stress associated with increased ROS generation, depletion of the critical antioxidant glutathione (GSH), and oxidation of the thiol/disulfide redox potential in the alveolar epithelial lining fluid and exhaled breath condensate. Across intracellular and extracellular GSH pools in alveolar type II cells and alveolar macrophages, chronic alcohol ingestion consistently induced a 40–60 mV oxidation of GSH/GSSG suggesting that the redox potentials of different alveolar GSH pools are in equilibrium. Alcohol-induced GSH depletion or oxidation was associated with impaired functions of alveolar type II cells and alveolar macrophages but could be reversed by restoring GSH pools in the alveolar lining fluid. The aims of this paper are to address the mechanisms for alcohol-induced GSH depletion and oxidation and the subsequent effects in alveolar barrier integrity, modulation of the immune response, and apoptosis.

1994 ◽  
Vol 266 (2) ◽  
pp. L148-L155 ◽  
Author(s):  
H. Blau ◽  
S. Riklis ◽  
V. Kravtsov ◽  
M. Kalina

Cultured alveolar type II cells and pulmonary epithelial (PE) cells in long-term culture were found to secrete colony-stimulating factors (CSF) into the medium in similar fashion to alveolar macrophages. CSF activity was determined by using the in vitro assay for myeloid progenitor cells [colony-forming units in culture (CFU-C)]. Both lipopolisaccharide (LPS) and interleukin-1 alpha (IL-1 alpha) were found to upregulate the secretion 6.5- to 8-fold from alveolar type II cells and macrophages. However, no stimulatory effect of these factors was observed in PE cells that release CSF into the medium constitutively, possibly due to the conditions of long-term culture. The CSF activity was partially neutralized (70% inhibition) by antibodies against murine granulocyte/macrophage (GM)-CSF and IL-3, thus indicating the presence of both GM-CSF and IL-3-like factors in the CSF. However, the presence of other cytokines in the CSF is highly probable. Surfactant-associated protein A (SP-A), which is known to play a central role in surfactant homeostasis and function, was also found to upregulate secretion of CSF (at concentrations of 0.1-5 micrograms/ml) from alveolar type II cells and macrophages. Control cells such as rat peritoneal macrophages, alveolar fibroblasts, and 3T3/NIH cell line could not be elicited by SP-A to release CSF. The results are discussed in relation to the possible participation of the alveolar epithelial cells in various intercellular signaling networks. Our studies suggest that alveolar type II cells and SP-A may play an important regulatory role in the modulation of immune and inflammatory effector cells within the alveolar space.


2004 ◽  
Vol 286 (6) ◽  
pp. L1088-L1094 ◽  
Author(s):  
Akitoshi Ishizaka ◽  
Tomoyuki Matsuda ◽  
Kurt H. Albertine ◽  
Hidefumi Koh ◽  
Sadatomo Tasaka ◽  
...  

KL-6 is a pulmonary epithelial mucin more prominently expressed on the surface membrane of alveolar type II cells when these cells are proliferating, stimulated, and/or injured. We hypothesized that high levels of KL-6 in epithelial lining fluid and plasma would reflect the severity of lung injury in patients with acute lung injury (ALI). Epithelial lining fluid was obtained at onset ( day 0) and day 1 of acute respiratory distress syndrome (ARDS)/ALI by bronchoscopic microsampling procedure in 35 patients. On day 0, KL-6 and albumin concentrations in epithelial lining fluid were significantly higher than in normal controls ( P < 0.001), and the concentrations of KL-6 in epithelial lining fluid ( P < 0.002) and in plasma ( P < 0.0001) were higher in nonsurvivors than in survivors of ALI/ARDS. These observations were corroborated by the immunohistochemical localization of KL-6 protein expression in the lungs of nonsurvivors with ALI and KL-6 secretion from cultured human alveolar type II cells stimulated by proinflammatory cytokines. Because injury to distal lung epithelial cells, including alveolar type II cells, is important in the pathogenesis of ALI, the elevation of KL-6 concentrations in plasma and epithelial lining fluid could be valuable indicators for poor prognosis in clinical ALI.


2005 ◽  
Vol 289 (4) ◽  
pp. L521-L528 ◽  
Author(s):  
Vivian Y. Lee ◽  
Clara Schroedl ◽  
Joslyn K. Brunelle ◽  
Leonard J. Buccellato ◽  
Ozkan I. Akinci ◽  
...  

Exposure to bleomycin in rodents induces lung injury and fibrosis. Alveolar epithelial cell death has been hypothesized as an initiating mechanism underlying bleomycin-induced lung injury and fibrosis. In the present study we evaluated the contribution of mitochondrial and receptor-meditated death pathways in bleomycin-induced death of mouse alveolar epithelial cells (MLE-12 cells) and primary rat alveolar type II cells. Control MLE-12 cells and primary rat alveolar type II cells died after 48 h of exposure to bleomycin. Both MLE-12 cells and rat alveolar type II cells overexpressing Bcl-XLdid not undergo cell death in response to bleomycin. Dominant negative Fas-associating protein with a death domain failed to prevent bleomycin-induced cell death in MLE-12 cells. Caspase-8 inhibitor CrmA did not prevent bleomycin-induced cell death in primary rat alveolar type II cells. Furthermore, fibroblast cells deficient in Bax and Bak, but not Bid, were resistant to bleomycin-induced cell death. To determine whether the stress kinase JNK was an upstream regulator of Bax activation, MLE-12 cells were exposed to bleomycin in the presence of an adenovirus encoding a dominant negative JNK. Bleomycin-induced Bax activation was prevented by the expression of a dominant negative JNK in MLE-12 cells. Dominant negative JNK prevented cell death in MLE-12 cells and in primary rat alveolar type II cells exposed to bleomycin. These data indicate that bleomycin induces cell death through a JNK-dependent mitochondrial death pathway in alveolar epithelial cells.


1999 ◽  
Vol 87 (5) ◽  
pp. 1852-1860 ◽  
Author(s):  
Yibing Wang ◽  
Hans G. Folkesson ◽  
Christian Jayr ◽  
Lorraine B. Ware ◽  
Michael A. Matthay

Although keratinocyte growth factor (KGF) protects against experimental acute lung injury, the mechanisms for the protective effect are incompletely understood. Therefore, the time-dependent effects of KGF on alveolar epithelial fluid transport were studied in rats 48–240 h after intratracheal administration of KGF (5 mg/kg). There was a marked proliferative response to KGF, measured both by in vivo bromodeoxyuridine staining and by staining with an antibody to a type II cell antigen. In controls, alveolar liquid clearance (ALC) was 23 ± 3%/h. After KGF pretreatment, ALC was significantly increased to 30 ± 2%/h at 48 h, to 39 ± 2%/h at 72 h, and to 36 ± 3%/h at 120 h compared with controls ( P < 0.05). By 240 h, ALC had returned to near-control levels (26 ± 2%/h). The increase in ALC was explained primarily by the proliferation of alveolar type II cells, since there was a good correlation between the number of alveolar type II cells and the increase in ALC ( r = 0.92, P = 0.02). The fraction of ALC inhibited by amiloride was similar in control rats (33%) as in 72-h KGF-pretreated rats (38%), indicating that there was probably no major change in the apical pathways for Na uptake in the KGF-pretreated rats at this time point. However, more rapid ALC at 120 h, compared with 48 h after KGF treatment, may be explained by greater maturation of α-epithelial Na channel, since its expression was greater at 120 than at 48 h, whereas the number of type II cells was the same at these two time points. β-Adrenergic stimulation with terbutaline 72 h after KGF pretreatment further increased ALC to 50 ± 7%/h ( P < 0.5). In summary, KGF induced a sustained increase over 120 h in the fluid transport capacity of the alveolar epithelium. This impressive upregulation in fluid transport was further enhanced with β-adrenergic agonist therapy, thus providing evidence that two different treatments can simultaneously increase the fluid transport capacity of the alveolar epithelium.


2000 ◽  
Vol 279 (6) ◽  
pp. L1110-L1119 ◽  
Author(s):  
Ralf Wodopia ◽  
Hyun Soo Ko ◽  
Javiera Billian ◽  
Rudolf Wiesner ◽  
Peter Bärtsch ◽  
...  

Fluid reabsorption from alveolar space is driven by active Na reabsorption via epithelial Na channels (ENaCs) and Na-K-ATPase. Both are inhibited by hypoxia. Here we tested whether hypoxia decreases Na transport by decreasing the number of copies of transporters in alveolar epithelial cells and in lungs of hypoxic rats. Membrane fractions were prepared from A549 cells exposed to hypoxia (3% O2) as well as from whole lung tissue and alveolar type II cells from rats exposed to hypoxia. Transport proteins were measured by Western blot analysis. In A549 cells, α1- and β1-Na-K-ATPase, Na/K/2Cl cotransport, and ENaC proteins decreased during hypoxia. In whole lung tissue, α1-Na-K-ATPase and Na/K/2Cl cotransport decreased. α- and β-ENaC mRNAs also decreased in hypoxic lungs. Similar results were seen in alveolar type II cells from hypoxic rats. These results indicate a slow decrease in the amount of Na-transporting proteins in alveolar epithelial cells during exposure to hypoxia that also occurs in vivo in lungs from hypoxic animals. The reduced number of transporters might account for the decreased transport activity and impaired edema clearance in hypoxic lungs.


1998 ◽  
Vol 274 (2) ◽  
pp. L196-L202 ◽  
Author(s):  
Jorge A. Gutierrez ◽  
Robert F. Gonzalez ◽  
Leland G. Dobbs

The pulmonary alveolar epithelium is composed of two distinct types of cells, type I and type II cells, both of which are critical for normal lung function. On the basis of experiments of both nature and in vivo studies, it has been hypothesized that expression of the type I or type II phenotype is influenced by mechanical factors. We have investigated the effects of mechanical distension on the expression of specific markers for the type I and type II cell phenotypes in cultured alveolar type II cells. Rat alveolar type II cells were tonically mechanically distended in culture. Cells were analyzed for a marker for the type I phenotype (rTI40, an integral membrane protein specific for type I cells) and for markers for the type II phenotype [surfactant protein (SP) A, SP-B, and SP-C] as well as for glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Mechanical distension caused a 68 ± 25% ( n = 3) increase in mRNA content of rTI40 relative to undistended controls. In contrast, mechanical distension resulted in a decrease in mRNA content of SP-B to 35 ± 19% ( n = 3) and of SP-C to 20 ± 6.7% ( n = 3) of undistended controls. There was no effect on mRNA content of SP-A or GAPDH. The differences in mRNA content of SP-B and SP-C were found to be primarily due to changes at the transcriptional level by nuclear run-on assays. The effects on rTI40 appear to be due to posttranscriptional events. These data show that mechanical distension influences alveolar epithelial phenotypic expression in vitro, at least in part, at the transcriptional level.


Sign in / Sign up

Export Citation Format

Share Document