scholarly journals Effects of Whole-Body 50-Hz Magnetic Field Exposure on Mouse Leydig Cells

2004 ◽  
Vol 4 ◽  
pp. 83-90 ◽  
Author(s):  
Zsolt Forgács ◽  
Zoltán Somosy ◽  
Györgyi Kubinyi ◽  
Hanna Sinay ◽  
Jozsef Bakos ◽  
...  

The main goal of this study was to evaluate the possible effect of whole-body magnetic field (MF) exposure on the steroidogenic capacity of Leydig cellsin vitro. In four separate experiments, male CFLP mice were exposed to sinusoidal 50-Hz, 100-μT MF. The duration of exposure was 23.5 h/day over a period of 14 days. At the end of the exposure, interstitial (Leydig) cells were isolated from the testicles of the sham-exposed and exposed animals. The cells were cultured for 48 h in the presence or absence of 1, 10, or 100 mIU/ml human chorionic gonadotropin (hCG). The luteinizing hormone (LH) analog hCG was used to check the testosterone (T) response of the sham-exposed controls and to evaluate the possible effect of the whole-body MF exposure on the steroidogenic capacity of Leydig cellsin vitro. Testosterone content of the culture media and blood sera was measured by radioimmunoassay (RIA). In the cultures obtained from MF-exposed animals, the hCG-stimulated T response was significanly higher (p < 0.01) compared with the sham-exposed controls, while the basal T production of cells and the level of serum T remained unaltered. No MF exposure–related histopathological alterations were found in testicles, epididymes, adrenals, prostates, and pituitary glands. The MF exposure did not affect the animal growth rate and the observed hematologic and serum chemical variables. Our results indicate a presumably direct effect of whole-body MF exposure on the hCG-stimulated steroidogenic response of mouse Leydig cells.

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Jianru Pan ◽  
Huocong He ◽  
Ying Su ◽  
Guangjin Zheng ◽  
Junxin Wu ◽  
...  

GST-TAT-SOD was the fusion of superoxide dismutase (SOD), cell-permeable peptide TAT, and glutathione-S-transferase (GST). It was proved to be a potential selective radioprotector in vitro in our previous work. This study evaluated the in vivo radioprotective activity of GST-TAT-SOD against whole-body irradiation. We demonstrated that intraperitoneal injection of 0.5 ml GST-TAT-SOD (2 kU/ml) 2 h before the 6 Gy whole-body irradiation in mice almost completely prevented the splenic damage. It could significantly enhance the splenic antioxidant activity which kept the number of splenic white pulp and consequently resisted the shrinkage of the spleen. Moreover, the thymus index, hepatic antioxidant activity, and white blood cell (WBC) count of peripheral blood in irradiated mice pretreated with GST-TAT-SOD also remarkably increased. Although the treated and untreated irradiated mice showed no significant difference in the growth rate of animal body weight at 7 days postirradiation, the highest growth rate of body weight was observed in the GST-TAT-SOD-pretreated group. Furthermore, GST-TAT-SOD pretreatment increased resistance against 8 Gy whole-body irradiation and enhanced 30 d survival. The overall effect of GST-TAT-SOD seemed to be a bit more powerful than that of amifostine. In conclusion, GST-TAT-SOD would be a safe and potentially promising radioprotector.


2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Zubeir M. Golamaully ◽  
Vishwakalyan Bhoyroo ◽  
Nadeem Nazurally ◽  
Vineshwar Gopal

With the ever growing population and economic needs of Mauritius, the flora of Mauritius has never been in more danger and one group of vascular plants is even more in peril; ferns.<em> Diplazium proliferum</em> is indigenous to the Mascarene region and is considered as a rare species in Mauritius. The need to develop a tested <em>in vitro</em> propagation protocol is a must to protect the biodiversity of Mauritius. This experiment was geared towards the establishment of a proper sterilization technique and the effect of 6-benzylaminopurine (BAP) and light on <em>in vitro</em> culture of this fern. Sterilization with 0.05% Mercuric chloride was effective to eliminate fungal contamination and allow germination of spores. Culture media supplemented with BAP did not significantly increase growth rate of both gametophytes and sporophytes of<em> D. proliferum</em>. Present results suggest efficient sterilization methods to be a crucial stage for successful<em> in vitro r</em>egeneration of ferns. The established protocol will be used as an optimized baseline protocol for the propagation of other indigenous ferns.


1982 ◽  
Vol 99 (2) ◽  
pp. 272-280 ◽  
Author(s):  
J. Grinsted ◽  
A. G. Byskov ◽  
I. J. Christensen ◽  
J. C. Jensenius

Abstract. The experiments were performed to study the influence of mesonephros on gonadal sex hormone release. Foetal and neonatal rabbit testes were cultured for 5 days, with and without their mesonephric tissue. The culture media were harvested every day and analyzed by RIA for the content of testosterone, progesterone and oestradiol. The development of the tissues were evaluated microscopically after culturing. The results show that between day 20 pc and day 1 pp the mesonephric tissue lowered the amounts of testosterone in co-cultures with testis. This effect disappears when the mesonephric derived cells develop the capacity to synthesize a meiosis inducing substance (MIS). A relationship between decrease of testosterone and secretion of MIS is discussed. It is concluded that the steroid producing cells of the testis, the Leydig cells, originate or are heavily influenced by mesonephros during early testicular organogenesis.


2000 ◽  
Vol 21 (2) ◽  
pp. 75-83 ◽  
Author(s):  
Kenichi Yamazaki ◽  
Hideo Fujinami ◽  
Tsukasa Shigemitsu ◽  
Izumi Nishimura

Author(s):  
Luminita Labusca ◽  
Dumitru-Daniel Herea ◽  
Anca Emanuela Minuti ◽  
Cristina Stavila ◽  
Camelia Danceanu ◽  
...  

Purpose: Iron oxide based magnetic nanoparticles (MNP) are versatile tools in biology and medicine. Adipose derived mesenchymal stem cells (ADSC) and Wharton Jelly mesenchymal stem cells (WJMSC) are currently tested in different strategies for regenerative regenerative medicine (RM) purposes. Their superiority compared to other mesenchymal stem cell consists in larger availability, and superior proliferative and differentiation potential. Magnetic field (MF) exposure of MNP-loaded ADSC has been proposed as a method to deliver mechanical stimulation for increasing conversion to musculoskeletal lineages. In this study, we investigated comparatively chondrogenic conversion of ADSC-MNP and WJMSC with or without MF exposure in order to identify the most appropriate cell source and differentiation protocol for future cartilage engineering strategies.Methods: Human primary ADSC and WJMSC from various donors were loaded with proprietary uncoated MNP. The in vitro effect on proliferation and cellular senescence (beta galactosidase assay) in long term culture was assessed. In vitro chondrogenic differentiation in pellet culture system, with or without MF exposure, was assessed using pellet histology (Safranin O staining) as well as quantitative evaluation of glycosaminoglycan (GAG) deposition per cell.Results: ADSC-MNP complexes displayed superior proliferative capability and decreased senescence after long term (28 days) culture in vitro compared to non-loaded ADSC and to WJMSC-MNP. Significant increase in chondrogenesis conversion in terms of GAG/cell ratio could be observed in ADSC-MNP. MF exposure increased glycosaminoglycan deposition in MNP-loaded ADSC, but not in WJMSC.Conclusion: ADSC-MNP display decreased cellular senescence and superior chondrogenic capability in vitro compared to non-loaded cells as well as to WJMSC-MNP. MF exposure further increases ADSC-MNP chondrogenesis in ADSC, but not in WJMSC. Loading ADSC with MNP can derive a successful procedure for obtaining improved chondrogenesis in ADSC. Further in vivo studies are needed to confirm the utility of ADSC-MNP complexes for cartilage engineering.


Sign in / Sign up

Export Citation Format

Share Document