scholarly journals 7-Chloroquinolin-4-yl Arylhydrazone Derivatives: Synthesis and Antifungal Activity

2011 ◽  
Vol 11 ◽  
pp. 1489-1495 ◽  
Author(s):  
Auri R. Duval ◽  
Pedro H. Carvalho ◽  
Maieli C. Soares ◽  
Daniela P. Gouvêa ◽  
Geonir M. Siqueira ◽  
...  

Fifteen 7-chloro-4-arylhydrazonequinolines have been evaluated for their in vitro antifungal activity against eight oral fungi:Candida albicans, C. parapsilosis, C. lipolytica, C. tropicalis, C. famata, C. glabrata, Rhodutorula mucilaginosa, andR. glutinis. Several compounds exhibited minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) activities comparable with the first-line drug fluconazole. These results could be considered as an important starting point for the rational design of new antifungal agents.

2011 ◽  
Vol 6 (11) ◽  
pp. 1934578X1100601 ◽  
Author(s):  
Dharmendra Singh ◽  
Umakant Sharma ◽  
Parveen Kumar ◽  
Yogesh K Gupta ◽  
M. P. Dobhal ◽  
...  

This study evaluated the in vitro antifungal activity of the chloroform extract of Plumeria bicolor and its phytoconstituents plumericin and isoplumericin against Candida species and Cryptococcus neoformans by measuring the Minimum Inhibitory Concentration (MIC) and Minimum Fungicidal Concentration (MFC). Plumericin's consistently high activity against Candida albicans, C. krusei, C. glabrata, C. tropicalis and Cryptococcus neoformans was more potent than isoplumericin and the standard antifungal drug nystatin suggesting its potential as a drug candidate for candidiasis and cryptococcosis.


Author(s):  
Luciana Thaís Rangel Souza ◽  
Cecília Correia Costa ◽  
Mateus Cardoso Oliveira ◽  
Isabel Celeste Caires Pereira Gusmão

Aim: to evaluate the in vitro action of thymol and carvacrol against the yeasts of Candida albicans ATCC10231 and Candida krusei ATCC34135. Method: A laboratory study was performed to evaluate antifungal activity. The characterization of the Minimal Inhibitory Concentration (MIC) of the thymol essential oil was carried out using the technique where the microdilution is performed, in which a plate containing 96 wells is used. The determination of the Minimum Fungicidal Concentration (MFC) was performed by dripping 10 μL of each of the concentrations evaluated on Sabouraud agar plates. Results: The MIC of thymol and carvacrol for C. albicans was 40 μg/mL and for Candida krusei it did not present antifungal activity. While the MIC of nystatin was 0.03mg for both species with thymol and carvacrol. Conclusion: Thymol presented satisfactory antifungal activity against the pathogens studied, but carvacrol did not present antifungal activity.


2010 ◽  
Vol 10 ◽  
pp. 1347-1355 ◽  
Author(s):  
Marcelle de L. Ferreira ◽  
Raoni S.B. Gonçalves ◽  
Laura N. de F. Cardoso ◽  
Carlos R. Kaiser ◽  
Andre L.P. Candéa ◽  
...  

Two series ofN’(E)-heteroaromatic-isonicotinohydrazide derivatives (3a-f and 4a-b) and 1-(7-chloroquinolin-4-yl)-2-[(heteroaromatic)methylene]hydrazone derivatives (5a-f and 6a-b) have been synthesized and evaluated for theirin vitroantibacterial activity againstMycobacterium tuberculosisH37Rv. Several compounds were noncytotoxic and exhibited significant minimum inhibitory concentration (MIC) activity (3.12, 2.50, 1.25, or 0.60 μg/mL), which can be compared to that of the first-line drugs ethambutol (3.12 μg/mL) and rifampicin (2.0 μg/ml). These results can be considered an important starting point for the rational design of new leads for anti-TB compounds.


2018 ◽  
Vol 62 (12) ◽  
Author(s):  
Mahdi Abastabar ◽  
Iman Haghani ◽  
Tahereh Shokohi ◽  
Mohammad Taghi Hedayati ◽  
Seyed Reza Aghili ◽  
...  

ABSTRACT The in vitro activity of tavaborole, an FDA-approved antifungal drug, was compared to that of four antifungal agents against 170 clinical fungal isolates originating from patients with onychomycosis. Tavaborole had low activity against all isolates compared to itraconazole, terbinafine, and fluconazole, the principal choices for treatment of onychomycosis. Thus, it appears that tavaborole is not a candidate for the treatment of onychomycosis due to Candida species, Aspergillus species, and dermatophytes.


2019 ◽  
Vol 58 (5) ◽  
pp. 703-706 ◽  
Author(s):  
Jun Maeda ◽  
Hiroyasu Koga ◽  
Kou Yuasa ◽  
Daisuke Neki ◽  
Yasuko Nanjoh ◽  
...  

Abstract In vitro antifungal activity of luliconazole against nondermatophytic moulds causing superficial infections was compared with that of five classes of 12 topical and systemic drugs. The minimum inhibitory concentration (MIC) of the drugs against the genera of Neoscytalidium, Fusarium, Aspergillus, Scedosporium, and Alternaria was measured via modified microdilution method. In results, the nondermatophytic moulds were found to be less susceptible to drugs to which Neoscytalidium spp. and Fusarium spp. were typically drug resistant. However, luliconazole was effective against all the genera tested, including afore-mentioned two species, and had the lowest MICs among the drugs tested.


2019 ◽  
Vol 5 (1) ◽  
pp. 23
Author(s):  
Rahayu Kusdarwati, Ayu Ratnaningtyas, Dewa Ketut Meles

Abstract Saprolegnia sp. is a fungus that causes the Saprolegniasis disease can infection eggs and fresh water fish. Treatment Saprolegniasis done using chemical drugs, however the use of drugs is bad for the environment and biota. The purpose of the research was to determined the antifungal activity include a minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) from Kaempferia galanga L. to Saprolegnia sp. by in vitro. This research used 9 different concentrations of Kaempferia galanga L extract were 50%, 12.5%, 6.25%, 3.12%, 1.56%, 0.78%, 0, 39%, 0.2%, positive control used H2O2 3% and negative control used DMSO 10%. The results showed that the extract of Kaempferia galanga L had an antifungal activity were inhibits and kill with minimum inhibitory concentration (MIC) was 0.39% equivalen with 3,9 mg/ml and minimu fungicidal concentration (MBC) was 1.56% equivalen with 15,6 mg/ml. The existence of antifungal activity against Saprolegnia sp. by in vitro caused by some active compounds from the extracts of the Kaempferia galanga L. are polyphenolic compounds, flavonoin, saponins and essential oils.


2008 ◽  
Vol 1 (1) ◽  
pp. 164-171 ◽  
Author(s):  
Koffi Koba ◽  
P W Poutouli ◽  
Christine Raynaud ◽  
Komla Sanda

The aerial parts of Ocimum gratissimum L. (Lamiaceae) harvested in Togo was steam-distilled and investigated for essential oil composition (GC and GC/MS) and in vitro antifungal activities. Thymol (31.79 %), p-cymene (15.57 %) and γ-terpinene (12.34 %) and were the major components of the oil. Other notable components identified in this oil were myrcene (6.94 %) and α-thujene (6.11 %).The in vitro antifungal activity was recorded with the minimum inhibitory concentrations (MICs) ranging from 80 to 150 µl.l-1, 150 to 500 µl.l-1  and from 100 to 150 µl.l-1 respectively on dermatophytes, imperfect filamentous fungi and pathogenic yeasts. Likewise, on tested fungi the minimum fungicidal concentration (MFC) varied from 300 µl.l-1 to 500 µl.l-1, 500 to 700 µl.l-1 and from 250 to 300 µl.l-1, respectively on dermatophytes, imperfect filamentous fungi and pathogenic yeasts. Keywords: O.gratissimum,  Antifungal, Essential oil; Thymol. © 2009 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. DOI: 10.3329/jsr.v1i1.1131 


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Maria Clerya Alvino Leite ◽  
André Parente de Brito Bezerra ◽  
Janiere Pereira de Sousa ◽  
Felipe Queiroga Sarmento Guerra ◽  
Edeltrudes de Oliveira Lima

Candida albicansis a yeast that commensally inhabits the human body and can cause opportunistic or pathogenic infections.Objective. To investigate the antifungal activity of citral againstC. albicans.Methodology. The minimum inhibitory concentration (MIC) and the minimum fungicidal concentration (MFC) were determined by the broth microdilution techniques. We also investigated possible citral action on cell walls (0.8 M sorbitol), cell membranes (citral to ergosterol binding), the time-kill curve, and biological activity on the yeast’s morphology.Results. The MIC and MFC of citral were, respectively, 64 µg/mL and 256 µg/mL. Involvement with the cell wall and ergosterol binding were excluded as possible mechanisms of action. In the morphological interference assay, it was observed that the product inhibited pseudohyphae and chlamydoconidia formation. The MIC and the MFC of citral required only 4 hours of exposure to effectively kill 99.9% of the inoculum.Conclusion. Citral showedin vitroantifungal potential against strains ofC. albicans. Citral’s mechanism of action does not involve the cell wall or ergosterol, and further study is needed to completely describe its effects before being used in the future as a component of new antifungals.


Sign in / Sign up

Export Citation Format

Share Document