scholarly journals Uji Aktivitas Antifungi Ekstrak Rimpang Kencur (Kaempferia galanga L.) Terhadap Saprolegnia sp. Secara In Vitro [Antifungal Activity Test Of Kaempferia galanga L. Extract To Saprolegnia sp. By In Vitro]

2019 ◽  
Vol 5 (1) ◽  
pp. 23
Author(s):  
Rahayu Kusdarwati, Ayu Ratnaningtyas, Dewa Ketut Meles

Abstract Saprolegnia sp. is a fungus that causes the Saprolegniasis disease can infection eggs and fresh water fish. Treatment Saprolegniasis done using chemical drugs, however the use of drugs is bad for the environment and biota. The purpose of the research was to determined the antifungal activity include a minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) from Kaempferia galanga L. to Saprolegnia sp. by in vitro. This research used 9 different concentrations of Kaempferia galanga L extract were 50%, 12.5%, 6.25%, 3.12%, 1.56%, 0.78%, 0, 39%, 0.2%, positive control used H2O2 3% and negative control used DMSO 10%. The results showed that the extract of Kaempferia galanga L had an antifungal activity were inhibits and kill with minimum inhibitory concentration (MIC) was 0.39% equivalen with 3,9 mg/ml and minimu fungicidal concentration (MBC) was 1.56% equivalen with 15,6 mg/ml. The existence of antifungal activity against Saprolegnia sp. by in vitro caused by some active compounds from the extracts of the Kaempferia galanga L. are polyphenolic compounds, flavonoin, saponins and essential oils.

2011 ◽  
Vol 6 (11) ◽  
pp. 1934578X1100601 ◽  
Author(s):  
Dharmendra Singh ◽  
Umakant Sharma ◽  
Parveen Kumar ◽  
Yogesh K Gupta ◽  
M. P. Dobhal ◽  
...  

This study evaluated the in vitro antifungal activity of the chloroform extract of Plumeria bicolor and its phytoconstituents plumericin and isoplumericin against Candida species and Cryptococcus neoformans by measuring the Minimum Inhibitory Concentration (MIC) and Minimum Fungicidal Concentration (MFC). Plumericin's consistently high activity against Candida albicans, C. krusei, C. glabrata, C. tropicalis and Cryptococcus neoformans was more potent than isoplumericin and the standard antifungal drug nystatin suggesting its potential as a drug candidate for candidiasis and cryptococcosis.


2017 ◽  
Vol 9 (2) ◽  
pp. 71
Author(s):  
Nurhasanah Nurhasanah ◽  
Fauzia Andrini ◽  
Yulis Hamidy

Shallot (Allium ascalonicum L.) has been known as traditional medicine. Shallot which has same genus with garlic(Allium sativum L.) contains allicin that is also found in garlic and has been suspected has fungicidal activity toCandida albicans. It is supported by several researches. Therefore, shallot is suspected has antifungal activity too.The aim of this research was to know antifungal activity of shallot’s water extortion againsts Candida albicans invitro. This was a laboratory experimental research which used completely randomized design, with diffusion method.Shallot’s water extortion was devided into three concentrations, there were 50%, 100% and 200%. Ketoconazole 2%was positive control and aquadest was negative control. The result of this research based on analysis of varians(Anova), there was significant difference between several treatments and was confirmed with Duncan New MultipleRange Test (DNMRT) p<0,05, there was significant difference between 100% shallot’s water extortion with othertreatments, but there was no significant difference between 50% shallot’s water extortion with 200% shallot’s. Theconclusion was shallot’s water extortion had antifungal activity againsts Candida albicans with the best concentration100%, but it was lower than ketoconazole 2%.


INDIAN DRUGS ◽  
2019 ◽  
Vol 56 (12) ◽  
pp. 39-44
Author(s):  
A. P. Pandit ◽  
◽  
K. S. Khandagale ◽  
V. C Nakhate ◽  
N. N Dharmadhikari

The objective of the study was to prepare antifungal gel using leaves of Amaranthus viridis for the treatment of cutaneous candidiasis. The leaves were studied for pharmacognostic evaluation. The powder of leaves was tested for phytoconstituents. The plant extract was evaluated for the minimum inhibitory concentration (MIC), minimum fungicidal concentration (MFC) and antifungal activity. Gel was prepared and evaluated for pH, viscosity, homogeneity and grittiness. MIC and MFC of extract were both found to be 600 mg. The zone of inhibition of extract was obtained at 21.2±0.2mm, which confirmed antifungal activity, due to presence of phenolic compound. Gel exhibited good antifungal activity, good spreadability, extrudability and high viscosity. Thus, gel loaded with leaves extract of A. viridis is a good choice for the treatment of cutaneous candidiasis.


2015 ◽  
Vol 7 (4) ◽  
pp. 412-416
Author(s):  
Mahboobeh NASSERI ◽  
Hossein AROUIEE ◽  
Shiva GOLMOHAMMADZADEH ◽  
Mahmoud Reza JAAFARI ◽  
Hossein NEAMATI

The present study aimed to determine minimum inhibitory concentration and minimum fungicidal concentration of the essential oil of Zataria multiflora to control Alternaria solani, Rhizoctonia solani, Rhizopus stolonifer, Aspergillus flavus, Aspergillus ochraceus and Aspergillus niger. The essential oil of Zataria multiflora was tested in vitro on PDA (malt extract agar medium) with eight concentrations: 0, 10, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900 and 1000 ppm. This investigation followed the completely randomized design (CRD) with three replications. GC-MS evaluations of the essential oil revealed that thymol (35%), carvacrol (34%), cymene-p (9.89%), gamma-terpinene (5.88%) and alpha-pinene (4.22%) were the main compounds of Zataria multiflora oil. The results showed that the essential oil of Zataria multiflora has antifungal activity; the lowest inhibition (75%) was observed in the A. niger, while the highest inhibition (95.3%) was observed in A. solani. Minimum inhibitory concentration for A. solani, R. solani, R. stolonifer, A. flavus, A. ochraceus and A. niger was 200, 200, 200, 300, 300 and 200 ppm respectively. In addition, the present results showed that minimum fungicidal concentration (MFC) for A. solani, R. solani, R .stolonifer, A. niger and A.ochraceus was 600, 400, 300, 900 and 700 ppm respectively and none of the tested concentrations were fatal for A. flavus. A. solani and R. solani showed a strong sensitivity to Zataria multiflora essential oil at all concentrations. Findings of the current study suggest that essential oils of Zataria multiflora could be used for control of postharvest phytopathogenic fungi on fruits or vegetables.


2019 ◽  
Vol 58 (5) ◽  
pp. 703-706 ◽  
Author(s):  
Jun Maeda ◽  
Hiroyasu Koga ◽  
Kou Yuasa ◽  
Daisuke Neki ◽  
Yasuko Nanjoh ◽  
...  

Abstract In vitro antifungal activity of luliconazole against nondermatophytic moulds causing superficial infections was compared with that of five classes of 12 topical and systemic drugs. The minimum inhibitory concentration (MIC) of the drugs against the genera of Neoscytalidium, Fusarium, Aspergillus, Scedosporium, and Alternaria was measured via modified microdilution method. In results, the nondermatophytic moulds were found to be less susceptible to drugs to which Neoscytalidium spp. and Fusarium spp. were typically drug resistant. However, luliconazole was effective against all the genera tested, including afore-mentioned two species, and had the lowest MICs among the drugs tested.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Martin Muthee Gakuubi ◽  
Angeline W. Maina ◽  
John M. Wagacha

The objective of this study was to evaluate the antifungal activity of essential oil (EO) ofEucalyptus camaldulensisDehnh. against fiveFusariumspp. commonly associated with maize.The essential oil had been extracted by steam distillation in a modified Clevenger-type apparatus from leaves ofE. camaldulensisand their chemical composition characterized by gas chromatography mass spectrometry. Poisoned food technique was used to determine the percentage inhibition of mycelial growth, minimum inhibitory concentration, and minimum fungicidal concentration of the EO on the test pathogens. Antifungal activity of different concentrations of the EO was evaluated using disc diffusion method. The most abundant compounds identified in the EO were 1,8-cineole (16.2%),α-pinene (15.6%),α-phellandrene (10.0%), and p-cymene (8.1%). The EO produced complete mycelial growth inhibition in all the test pathogens at a concentration of 7-8 μL/mL after five days of incubation. The minimum inhibitory concentration and minimum fungicidal concentration of the EO on the test fungi were in the range of 7-8 μL/mL and 8–10 μL/mL, respectively. These findings confirm the fungicidal properties ofE. camaldulensisessential oils and their potential use in the management of economically importantFusariumspp. and as possible alternatives to synthetic fungicides.


2011 ◽  
Vol 11 ◽  
pp. 1489-1495 ◽  
Author(s):  
Auri R. Duval ◽  
Pedro H. Carvalho ◽  
Maieli C. Soares ◽  
Daniela P. Gouvêa ◽  
Geonir M. Siqueira ◽  
...  

Fifteen 7-chloro-4-arylhydrazonequinolines have been evaluated for their in vitro antifungal activity against eight oral fungi:Candida albicans, C. parapsilosis, C. lipolytica, C. tropicalis, C. famata, C. glabrata, Rhodutorula mucilaginosa, andR. glutinis. Several compounds exhibited minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) activities comparable with the first-line drug fluconazole. These results could be considered as an important starting point for the rational design of new antifungal agents.


2019 ◽  
Vol 5 (1) ◽  
pp. 15
Author(s):  
Rahayu Kusdarwati, Pustika Murtinintias, Dewa Ketut Meles

Abstract Saprolegniasis is a mycotic disease caused by Saprolegnia sp. that usually attacking wild fish and farming fish. Saprolegnia sp. cause a lot of harm in process of the fish cultivation. Prevention and treatment of the common practice is use chemical drugs, but the use of these chemicals tend to be environmentally unfriendly and there are has karsinogenik effect. Therefore, the use of traditional medicines is one of alternative to control Saprolegnia sp. safer than chemical drugs. Green betel leaf contains phenolic compounds and tannins are efficacious as antifungal agent. This study aims to prove the antifungal activity of extracts of betel leaf (Piper betle L) for Saprolegnia sp., and to know the minimum concentration of betel leaf extract (Piper betle L) as antifungal for Saprolegnia sp. The design of this experiment is used completely randomized design (CRD) with 11 treatments and 3 replications. This study used the dilution method through the Minimum Inhibitory Concentration determination (MIC) and Minimum Fungicidal Concentration (MFC). The concentration of the extract used was 50% (0.5 g/ml), 25% (0.25 g/ml), 12.5% (0.125 g/ml), 6.25% (0.0625 g/ml), 3.13% (0.0313 g/ml), 1.56% (0.0156 g/ml), 0.78% (0.0078 g/ml), 0.39% (0.0039 g/ml), 0.2% (0.002 g/ml) of betel leaf extract. A positive control containing 2 ml of 3% hydrogen peroxide were added fungal suspension until 4 ml Negative control containing 2 ml of 10% DMSO were added fungal suspension until 4 ml. The main parameters in this study is the value of optical density (OD) for MIC (Minimum Inhibitory Concentration) test and the absence of Saprolegnia sp. growing on SDA media for MFC (Minimum Fungicidal Concentration) test. 0.20% (0.002g/ml) concentration of of betel leaf extract is the minimum concentration that can inhibit the growth of Saprolegnia sp. MFC test results showed concentrations of 0.78% (0.0078 g/ml) betel leaf extract is the minimum concentration that can kill Saprolegnia sp.


10.17158/234 ◽  
2012 ◽  
Vol 18 (1) ◽  
Author(s):  
Kathleen G. Bersabal ◽  
Kyrie Marie D. Deluao ◽  
Meg C. Ibarra ◽  
Nessa Karla C. Jerusalem

Candida albicans is a fungus that is normally present on the skin and in mucous membranes such as vagina, mouth, or rectum. This fungus also can travel through the blood stream and affect the throat, intestines, and heart valves. It becomes an infectious agent when there is some change in the body environment that allows it to grow out of control; thus, causing a modern day disease brought on by antibiotics, drugs, processed foods, sugar and poor diet. Folkloric practice suggests that Kulantrillo de Allambre (Adiantum capillus-veneris) is effective as antifungal medication against Candida albicans; therefore, this study was undertaken to verify such claim. This effort included the phytochemical screening of active constituents, susceptibility and minimum inhibitory concentration tests involving the plant. To prove that Kulantrillo de Allambre possesses antifungal activity, a formulation of vaginal cream out of the plant extracts was tested. Alkaloids, saponins, steroids, flavonoids, tannins and anthraquinones were performed following the method described by Guevara et al. (2005). Kirby-Bauer Method was employed for the susceptibility test and two-fold agar dilution was employed for the MIC. Vaginal cream was formulated following the method of Ansel (2004). Tests revealed the presence of flavonoids only, which exhibit the antifungal property. Kirby-Bauer Method revealed that both test extract and positive control showed strong inhibition equivalent to 17.71 ± 6.3183 mm and 23.54 ± 4.9629 mm, respectively. Minimum Inhibitory Concentration of the plant extract was 50,000 ug/mL. Statistical analysis showed that there is no significant difference between the antifungal property of plant extract and positive control. Both test drugs have similar antifungal property, suggesting that the plant material is a good antifungal agent. The physical properties of vaginal cream conformed to the standard of physical properties of commercialized product available in the market.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Maria Clerya Alvino Leite ◽  
André Parente de Brito Bezerra ◽  
Janiere Pereira de Sousa ◽  
Felipe Queiroga Sarmento Guerra ◽  
Edeltrudes de Oliveira Lima

Candida albicansis a yeast that commensally inhabits the human body and can cause opportunistic or pathogenic infections.Objective. To investigate the antifungal activity of citral againstC. albicans.Methodology. The minimum inhibitory concentration (MIC) and the minimum fungicidal concentration (MFC) were determined by the broth microdilution techniques. We also investigated possible citral action on cell walls (0.8 M sorbitol), cell membranes (citral to ergosterol binding), the time-kill curve, and biological activity on the yeast’s morphology.Results. The MIC and MFC of citral were, respectively, 64 µg/mL and 256 µg/mL. Involvement with the cell wall and ergosterol binding were excluded as possible mechanisms of action. In the morphological interference assay, it was observed that the product inhibited pseudohyphae and chlamydoconidia formation. The MIC and the MFC of citral required only 4 hours of exposure to effectively kill 99.9% of the inoculum.Conclusion. Citral showedin vitroantifungal potential against strains ofC. albicans. Citral’s mechanism of action does not involve the cell wall or ergosterol, and further study is needed to completely describe its effects before being used in the future as a component of new antifungals.


Sign in / Sign up

Export Citation Format

Share Document