scholarly journals Long-read, whole genome shotgun sequence data for five model organisms

2014 ◽  
Author(s):  
Kristi E Kim ◽  
Paul Peluso ◽  
Primo Baybayan ◽  
Patricia Jane Yeadon ◽  
Charles Yu ◽  
...  

Single molecule, real-time (SMRT) sequencing from Pacific Biosciences is increasingly used in many areas of biological research including de novo genome assembly, structural-variant identification, haplotype phasing, mRNA isoform discovery, and base-modification analyses. High-quality, public datasets of SMRT sequences can spur development of analytic tools that can accommodate unique characterisitcs of SMRT data (long read lengths, lack of GC or amplification bias, and a random error profile leading to high consensus accuracy). In this paper, we describe eight high-coverage SMRT sequence datasets from five organisms (Escherichia coli, Saccharomyces cerevisiae, Neurospora crassa, Arabidopsis thaliana, and Drosophila melanogaster) that have been publicly released to the general scientific community (NCBI Sequence Read Archive ID SRP040522). Data were generated using two sequencing chemistries (P4-C2 and P5-C3) on the PacBio RS II instrument. The datasets reported here can be used without restriction by the research community to generate whole-genome assemblies, test new algorithms, investigate genome structure and evolution, and identify base modifications in some of the most widely-studied model systems in biological research.

GigaScience ◽  
2020 ◽  
Vol 9 (12) ◽  
Author(s):  
Sanjit Singh Batra ◽  
Michal Levy-Sakin ◽  
Jacqueline Robinson ◽  
Joseph Guillory ◽  
Steffen Durinck ◽  
...  

Abstract Background Baboons are a widely used nonhuman primate model for biomedical, evolutionary, and basic genetics research. Despite this importance, the genomic resources for baboons are limited. In particular, the current baboon reference genome Panu_3.0 is a highly fragmented, reference-guided (i.e., not fully de novo) assembly, and its poor quality inhibits our ability to conduct downstream genomic analyses. Findings Here we present a de novo genome assembly of the olive baboon (Papio anubis) that uses data from several recently developed single-molecule technologies. Our assembly, Panubis1.0, has an N50 contig size of ∼1.46 Mb (as opposed to 139 kb for Panu_3.0) and has single scaffolds that span each of the 20 autosomes and the X chromosome. Conclusions We highlight multiple lines of evidence (including Bionano Genomics data, pedigree linkage information, and linkage disequilibrium data) suggesting that there are several large assembly errors in Panu_3.0, which have been corrected in Panubis1.0.


2014 ◽  
Vol 1 (1) ◽  
Author(s):  
Kristi E Kim ◽  
Paul Peluso ◽  
Primo Babayan ◽  
P. Jane Yeadon ◽  
Charles Yu ◽  
...  

2018 ◽  
Author(s):  
Jolene T. Sutton ◽  
Martin Helmkampf ◽  
Cynthia C. Steiner ◽  
M. Renee Bellinger ◽  
Jonas Korlach ◽  
...  

AbstractGenome-level data can provide researchers with unprecedented precision to examine the causes and genetic consequences of population declines, and to apply these results to conservation management. Here we present a high-quality, long-read, de novo genome assembly for one of the world’s most endangered bird species, the Alala. As the only remaining native crow species in Hawaii, the Alala survived solely in a captive breeding program from 2002 until 2016, at which point a long-term reintroduction program was initiated. The high-quality genome assembly was generated to lay the foundation for both comparative genomics studies, and the development of population-level genomic tools that will aid conservation and recovery efforts. We illustrate how the quality of this assembly places it amongst the very best avian genomes assembled to date, comparable to intensively studied model systems. We describe the genome architecture in terms of repetitive elements and runs of homozygosity, and we show that compared with more outbred species, the Alala genome is substantially more homozygous. We also provide annotations for a subset of immunity genes that are likely to be important for conservation applications, and we discuss how this genome is currently being used as a roadmap for downstream conservation applications.


2019 ◽  
Author(s):  
Mitchell R. Vollger ◽  
Glennis A. Logsdon ◽  
Peter A. Audano ◽  
Arvis Sulovari ◽  
David Porubsky ◽  
...  

AbstractThe sequence and assembly of human genomes using long-read sequencing technologies has revolutionized our understanding of structural variation and genome organization. We compared the accuracy, continuity, and gene annotation of genome assemblies generated from either high-fidelity (HiFi) or continuous long-read (CLR) datasets from the same complete hydatidiform mole human genome. We find that the HiFi sequence data assemble an additional 10% of duplicated regions and more accurately represent the structure of tandem repeats, as validated with orthogonal analyses. As a result, an additional 5 Mbp of pericentromeric sequences are recovered in the HiFi assembly, resulting in a 2.5-fold increase in the NG50 within 1 Mbp of the centromere (HiFi 480.6 kbp, CLR 191.5 kbp). Additionally, the HiFi genome assembly was generated in significantly less time with fewer computational resources than the CLR assembly. Although the HiFi assembly has significantly improved continuity and accuracy in many complex regions of the genome, it still falls short of the assembly of centromeric DNA and the largest regions of segmental duplication using existing assemblers. Despite these shortcomings, our results suggest that HiFi may be the most effective stand-alone technology for de novo assembly of human genomes.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
John M. Urban ◽  
Michael S. Foulk ◽  
Jacob E. Bliss ◽  
C. Michelle Coleman ◽  
Nanyan Lu ◽  
...  

Abstract Background The lower Dipteran fungus fly, Sciara coprophila, has many unique biological features that challenge the rule of genome DNA constancy. For example, Sciara undergoes paternal chromosome elimination and maternal X chromosome nondisjunction during spermatogenesis, paternal X elimination during embryogenesis, intrachromosomal DNA amplification of DNA puff loci during larval development, and germline-limited chromosome elimination from all somatic cells. Paternal chromosome elimination in Sciara was the first observation of imprinting, though the mechanism remains a mystery. Here, we present the first draft genome sequence for Sciara coprophila to take a large step forward in addressing these features. Results We assembled the Sciara genome using PacBio, Nanopore, and Illumina sequencing. To find an optimal assembly using these datasets, we generated 44 short-read and 50 long-read assemblies. We ranked assemblies using 27 metrics assessing contiguity, gene content, and dataset concordance. The highest-ranking assemblies were scaffolded using BioNano optical maps. RNA-seq datasets from multiple life stages and both sexes facilitated genome annotation. A set of 66 metrics was used to select the first draft assembly for Sciara. Nearly half of the Sciara genome sequence was anchored into chromosomes, and all scaffolds were classified as X-linked or autosomal by coverage. Conclusions We determined that X-linked genes in Sciara males undergo dosage compensation. An entire bacterial genome from the Rickettsia genus, a group known to be endosymbionts in insects, was co-assembled with the Sciara genome, opening the possibility that Rickettsia may function in sex determination in Sciara. Finally, the signal level of the PacBio and Nanopore data support the presence of cytosine and adenine modifications in the Sciara genome, consistent with a possible role in imprinting.


2016 ◽  
Vol 56 (6) ◽  
pp. 1092-1102 ◽  
Author(s):  
Eric J. Armstrong ◽  
Jonathon H. Stillman

Crustaceans have commonly been used as non-model systems in basic biological research, especially physiological regulation. With the recent and rapid adoption of functional genomic tools, crustaceans are increasingly becoming model systems for ecological investigations of development and evolution and for mechanistic examinations of genotype–phenotype interactions and molecular pathways of response to environmental stressors. Comparative transcriptomic approaches, however, remain constrained by a lack of sequence data in closely related crustacean taxa. We identify challenges in the use of functional genomics tools in comparative analysis among decapod crustacean in light of recent advances. We present RNA-seq data from two congeneric species of porcelain crabs (Petrolisthes cinctipes and P. manimaculis) used to construct two de novo transcriptome assemblies with ∼194K and ∼278K contigs, respectively. We characterize and contrast these assemblies and compare them to a previously generated EST sequence library for P. cinctipes. We also discuss the potential use of these data as a case-study system in the broader context of crustacean comparative transcriptomics.


2021 ◽  
Author(s):  
Lauren Coombe ◽  
Janet X Li ◽  
Theodora Lo ◽  
Johnathan Wong ◽  
Vladimir Nikolic ◽  
...  

Background Generating high-quality de novo genome assemblies is foundational to the genomics study of model and non-model organisms. In recent years, long-read sequencing has greatly benefited genome assembly and scaffolding, a process by which assembled sequences are ordered and oriented through the use of long-range information. Long reads are better able to span repetitive genomic regions compared to short reads, and thus have tremendous utility for resolving problematic regions and helping generate more complete draft assemblies. Here, we present LongStitch, a scalable pipeline that corrects and scaffolds draft genome assemblies exclusively using long reads. Results LongStitch incorporates multiple tools developed by our group and runs in up to three stages, which includes initial assembly correction (Tigmint-long), followed by two incremental scaffolding stages (ntLink and ARKS-long). Tigmint-long and ARKS-long are misassembly correction and scaffolding utilities, respectively, previously developed for linked reads, that we adapted for long reads. Here, we describe the LongStitch pipeline and introduce our new long-read scaffolder, ntLink, which utilizes lightweight minimizer mappings to join contigs. LongStitch was tested on short and long-read assemblies of three different human individuals using corresponding nanopore long-read data, and improves the contiguity of each assembly from 2.0-fold up to 304.6-fold (as measured by NGA50 length). Furthermore, LongStitch generates more contiguous and correct assemblies compared to state-of-the-art long-read scaffolder LRScaf in most tests, and consistently runs in under five hours using less than 23GB of RAM. Conclusions Due to its effectiveness and efficiency in improving draft assemblies using long reads, we expect LongStitch to benefit a wide variety of de novo genome assembly projects. The LongStitch pipeline is freely available at https://github.com/bcgsc/longstitch.


2014 ◽  
Author(s):  
Konstantin Berlin ◽  
Sergey Koren ◽  
Chen-Shan Chin ◽  
James Drake ◽  
Jane M Landolin ◽  
...  

We report reference-grade de novo assemblies of four model organisms and the human genome from single-molecule, real-time (SMRT) sequencing. Long-read SMRT sequencing is routinely used to finish microbial genomes, but the available assembly methods have not scaled well to larger genomes. Here we introduce the MinHash Alignment Process (MHAP) for efficient overlapping of noisy, long reads using probabilistic, locality-sensitive hashing. Together with Celera Assembler, MHAP was used to reconstruct the genomes of Escherichia coli, Saccharomyces cerevisiae, Arabidopsis thaliana, Drosophila melanogaster, and human from high-coverage SMRT sequencing. The resulting assemblies include fully resolved chromosome arms and close persistent gaps in these important reference genomes, including heterochromatic and telomeric transition sequences. For D. melanogaster, MHAP achieved a 600-fold speedup relative to prior methods and a cloud computing cost of a few hundred dollars. These results demonstrate that single-molecule sequencing alone can produce near-complete eukaryotic genomes at modest cost.


2020 ◽  
Vol 10 (9) ◽  
pp. 2911-2925
Author(s):  
llya Soifer ◽  
Nicole L Fong ◽  
Nelda Yi ◽  
Andrea T Ireland ◽  
Irene Lam ◽  
...  

Abstract In recent years, improved sequencing technology and computational tools have made de novo genome assembly more accessible. Many approaches, however, generate either an unphased or only partially resolved representation of a diploid genome, in which polymorphisms are detected but not assigned to one or the other of the homologous chromosomes. Yet chromosomal phase information is invaluable for the understanding of phenotypic trait inheritance in the cases of compound heterozygosity, allele-specific expression or cis-acting variants. Here we use a combination of tools and sequencing technologies to generate a de novo diploid assembly of the human primary cell line WI-38. First, data from PacBio single molecule sequencing and Bionano Genomics optical mapping were combined to generate an unphased assembly. Next, 10x Genomics linked reads were combined with the hybrid assembly to generate a partially phased assembly. Lastly, we developed and optimized methods to use short-read (Illumina) sequencing of flow cytometry-sorted metaphase chromosomes to provide phase information. The final genome assembly was almost fully (94%) phased with the addition of approximately 2.5-fold coverage of Illumina data from the sequenced metaphase chromosomes. The diploid nature of the final de novo genome assembly improved the resolution of structural variants between the WI-38 genome and the human reference genome. The phased WI-38 sequence data are available for browsing and download at wi38.research.calicolabs.com. Our work shows that assembling a completely phased diploid genome de novo from the DNA of a single individual is now readily achievable.


Sign in / Sign up

Export Citation Format

Share Document