scholarly journals A seasonal copepod ‘lipid pump’ promotes carbon sequestration in the deep North Atlantic

2015 ◽  
Author(s):  
Sigrun H. Jonasdottir ◽  
Andre W. Visser ◽  
Katherine Richardson ◽  
Michael R. Heath

Estimates of carbon flux to the deep oceans are essential for our understanding for global carbon budgets. We identify an important mechanism, the lipid pump, that has been unrecorded in previous estimates. The seasonal lipid pump is highly efficient in sequestering carbon in the deep ocean. It involves the vertical transport and respiration of carbon rich compounds (lipids) by hibernating zooplankton. Estimates for one species, the copepod Calanus finmarchicus overwintering in the North Atlantic, sequester around the same amount of carbon as does the flux of detrital material that is usually thought of as the main component of the biological pump. The efficiency of the lipid pump derives from a near complete decoupling between nutrient and carbon cycling and directly transports carbon through the meso-pelagic with very little attenuation to below the permanent thermocline. Consequently the seasonal transport of lipids by migrating zooplankton is overlooked in estimates of deep ocean carbon sequestration by the biological pump.

2015 ◽  
Vol 112 (39) ◽  
pp. 12122-12126 ◽  
Author(s):  
Sigrún Huld Jónasdóttir ◽  
André W. Visser ◽  
Katherine Richardson ◽  
Michael R. Heath

Estimates of carbon flux to the deep oceans are essential for our understanding of global carbon budgets. Sinking of detrital material (“biological pump”) is usually thought to be the main biological component of this flux. Here, we identify an additional biological mechanism, the seasonal “lipid pump,” which is highly efficient at sequestering carbon into the deep ocean. It involves the vertical transport and metabolism of carbon rich lipids by overwintering zooplankton. We show that one species, the copepod Calanus finmarchicus overwintering in the North Atlantic, sequesters an amount of carbon equivalent to the sinking flux of detrital material. The efficiency of the lipid pump derives from a near-complete decoupling between nutrient and carbon cycling—a “lipid shunt,” and its direct transport of carbon through the mesopelagic zone to below the permanent thermocline with very little attenuation. Inclusion of the lipid pump almost doubles the previous estimates of deep-ocean carbon sequestration by biological processes in the North Atlantic.


2012 ◽  
Vol 3 (2) ◽  
pp. 1347-1389
Author(s):  
R. Séférian ◽  
L. Bopp ◽  
D. Swingedouw ◽  
J. Servonnat

Abstract. Several recent observation-based studies suggest that ocean anthropogenic carbon uptake has slowed down due to the impact of anthropogenic forced climate change. However, it remains unclear if detected changes over the recent time period can really be attributed to anthropogenic climate change or to natural climate variability (internal plus naturally forced variability). One large uncertainty arises from the lack of knowledge on ocean carbon flux natural variability at the decadal time scales. To gain more insights into decadal time scales, we have examined the internal variability of ocean carbon fluxes in a 1000-yr long preindustrial simulation performed with the Earth System Model IPSL-CM5A-LR. Our analysis shows that ocean carbon fluxes exhibit low-frequency oscillations that emerge from their year-to-year variability in the North Atlantic, the North Pacific, and the Southern Ocean. In our model, a 20-yr mode of variability in the North Atlantic air-sea carbon flux is driven by sea surface temperature variability and accounts for ~40% of the interannual regional variance. The North Pacific and the Southern Ocean carbon fluxes are also characterized by decadal to multi-decadal modes of variability (10 to 50 yr) that account for 30–40% of the interannual regional variance. But these modes are driven by the vertical supply of dissolved inorganic carbon through the variability of Ekman-induced upwelling and deep-mixing events. Differences in drivers of regional modes of variability stem from the coupling between ocean dynamics variability and the ocean carbon distribution, which is set by large-scale secular ocean circulation.


2009 ◽  
Vol 5 (3) ◽  
pp. 1259-1296 ◽  
Author(s):  
L. C. Skinner

Abstract. So far, the exploration of possible mechanisms for glacial atmospheric CO2 draw-down and marine carbon sequestration has focussed almost exclusively on dynamic or kinetic processes (i.e. variable mixing-, equilibration- or export rates). Here an attempt is made to underline instead the possible importance of changes in the standing volumes of intra-oceanic carbon reservoirs (i.e. different water-masses) in setting the total marine carbon inventory. By way of illustration, a simple mechanism is proposed for enhancing the carbon storage capacity of the deep sea, which operates via an increase in the volume of relatively carbon-enriched AABW-like deep-water filling the ocean basins. Given the hypsometry of the ocean floor and an active biological pump, the water-mass that fills more than the bottom 3 km of the ocean will essentially determine the carbon content of the marine reservoir. A set of simple box-model experiments confirm the expectation that a deep sea dominated by AABW-like deep-water holds more CO2, prior to any additional changes in ocean overturning rate, biological export or ocean-atmosphere exchange. The magnitude of this "standing volume effect" might be as large as the contributions that have been attributed to carbonate compensation, the thermodynamic solubility pump or the biological pump for example. If incorporated into the list of factors that have contributed to marine carbon sequestration during past glaciations, this standing volume mechanism may help to reduce the amount of glacial – interglacial CO2 change that remains to be explained by other mechanisms that are difficult to assess in the geological archive, such as reduced mass transport or mixing rates in particular. This in turn could help narrow the search for forcing conditions capable of pushing the global carbon cycle between glacial and interglacial modes.


2009 ◽  
Vol 5 (3) ◽  
pp. 537-550 ◽  
Author(s):  
L. C. Skinner

Abstract. So far, the exploration of possible mechanisms for glacial atmospheric CO2 drawdown and marine carbon sequestration has tended to focus on dynamic or kinetic processes (i.e. variable mixing-, equilibration- or export rates). Here an attempt is made to underline instead the possible importance of changes in the standing volumes of intra-oceanic carbon reservoirs (i.e. different water-masses) in influencing the total marine carbon inventory. By way of illustration, a simple mechanism is proposed for enhancing the marine carbon inventory via an increase in the volume of relatively cold and carbon-enriched deep water, analogous to modern Lower Circumpolar Deep Water (LCDW), filling the ocean basins. A set of simple box-model experiments confirm the expectation that a deep sea dominated by an expanded LCDW-like watermass holds more CO2, without any pre-imposed changes in ocean overturning rate, biological export or ocean-atmosphere exchange. The magnitude of this "standing volume effect" (which operates by boosting the solubility- and biological pumps) might be as large as the contributions that have previously been attributed to carbonate compensation, terrestrial biosphere reduction or ocean fertilisation for example. By providing a means of not only enhancing but also driving changes in the efficiency of the biological- and solubility pumps, this standing volume mechanism may help to reduce the amount of glacial-interglacial CO2 change that remains to be explained by other mechanisms that are difficult to assess in the geological archive, such as reduced mass transport or mixing rates in particular. This in turn could help narrow the search for forcing conditions capable of pushing the global carbon cycle between glacial and interglacial modes.


2020 ◽  
Author(s):  
Laurie Menviel ◽  
Paul Spence ◽  
Luke Skinner ◽  
Kazuyo Tachikawa ◽  
Tobias Friedrich ◽  
...  

<p>While paleoproxy records and modelling studies consistently suggest that North Atlantic  Deep Water (NADW) was shallower at the Last Glacial Maximum (LGM) than during pre-industrial times, its strength is still subject to debate partly due to different signals across the North Atlantic. Here, using a series of LGM experiments performed with a carbon isotopes enabled Earth system model, we show that proxy records are consistent with a shallower and weaker NADW. A significant equatorward advance of sea-ice over the Labrador Sea and the Nordic Seas shifts the NADW convection sites to the south of the Norwegian Sea. While the deep western boundary current in the Northwest Atlantic weakens with NADW, a change in density gradients strengthens the deep southward flow in the Northeast Atlantic. A shoaling and weakening of NADW further allow penetration of Antarctic Bottom Water in the North Atlantic despite its transport being reduced. This resultant globally weaker oceanic circulation leads to an increase in deep ocean carbon of ~500 GtC, thus significantly contributing to the lower LGM atmospheric CO<sub>2</sub> concentration.</p><p> </p>


2013 ◽  
Vol 4 (1) ◽  
pp. 109-127 ◽  
Author(s):  
R. Séférian ◽  
L. Bopp ◽  
D. Swingedouw ◽  
J. Servonnat

Abstract. Several recent observation-based studies suggest that ocean anthropogenic carbon uptake has slowed down due to the impact of anthropogenic forced climate change. However, it remains unclear whether detected changes over the recent time period can be attributed to anthropogenic climate change or rather to natural climate variability (internal plus naturally forced variability) alone. One large uncertainty arises from the lack of knowledge on ocean carbon flux natural variability at the decadal time scales. To gain more insights into decadal time scales, we have examined the internal variability of ocean carbon fluxes in a 1000 yr long preindustrial simulation performed with the Earth System Model IPSL-CM5A-LR. Our analysis shows that ocean carbon fluxes exhibit low-frequency oscillations that emerge from their year-to-year variability in the North Atlantic, the North Pacific, and the Southern Ocean. In our model, a 20 yr mode of variability in the North Atlantic air-sea carbon flux is driven by sea surface temperature variability and accounts for ~40% of the interannual regional variance. The North Pacific and the Southern Ocean carbon fluxes are also characterised by decadal to multi-decadal modes of variability (10 to 50 yr) that account for 20–40% of the interannual regional variance. These modes are driven by the vertical supply of dissolved inorganic carbon through the variability of Ekman-induced upwelling and deep-mixing events. Differences in drivers of regional modes of variability stem from the coupling between ocean dynamics variability and the ocean carbon distribution, which is set by large-scale secular ocean circulation.


Author(s):  
Deborah Steinberg

The structure of planktonic communities profoundly affects particle export and sequestration of organic material (the biological pump) and the chemical cycling of nutrients. This chapter describes the integral and multifaceted role zooplankton (both protozoan and metazoan) play in the export and cycling of elements in the ocean, with an emphasis on the North Atlantic Ocean and adjacent seas. Zooplankton consume a significant proportion of primary production across the world's oceans, and their metabolism plays a key role in recycling carbon, nitrogen, and other elements. The chapter also addresses how human or climate-influenced changes in North Atlantic zooplankton populations may in turn drive changes in zooplankton-mediated biogeochemical cycling.


2018 ◽  
Vol 15 (8) ◽  
pp. 2289-2307 ◽  
Author(s):  
Nolwenn Lemaitre ◽  
Hélène Planquette ◽  
Frédéric Planchon ◽  
Géraldine Sarthou ◽  
Stéphanie Jacquet ◽  
...  

Abstract. The remineralisation of sinking particles by prokaryotic heterotrophic activity is important for controlling oceanic carbon sequestration. Here, we report mesopelagic particulate organic carbon (POC) remineralisation fluxes in the North Atlantic along the GEOTRACES-GA01 section (GEOVIDE cruise; May–June 2014) using the particulate biogenic barium (excess barium; Baxs) proxy. Important mesopelagic (100–1000 m) Baxs differences were observed along the transect depending on the intensity of past blooms, the phytoplankton community structure, and the physical forcing, including downwelling. The subpolar province was characterized by the highest mesopelagic Baxs content (up to 727 pmol L−1), which was attributed to an intense bloom averaging 6 mg chl a m−3 between January and June 2014 and by an intense 1500 m deep convection in the central Labrador Sea during the winter preceding the sampling. This downwelling could have promoted a deepening of the prokaryotic heterotrophic activity, increasing the Baxs content. In comparison, the temperate province, characterized by the lowest Baxs content (391 pmol L−1), was sampled during the bloom period and phytoplankton appear to be dominated by small and calcifying species, such as coccolithophorids. The Baxs content, related to oxygen consumption, was converted into a remineralisation flux using an updated relationship, proposed for the first time in the North Atlantic. The estimated fluxes were of the same order of magnitude as other fluxes obtained using independent methods (moored sediment traps, incubations) in the North Atlantic. Interestingly, in the subpolar and subtropical provinces, mesopelagic POC remineralisation fluxes (up to 13 and 4.6 mmol C m−2 d−1, respectively) were equalling and occasionally even exceeding upper-ocean POC export fluxes, deduced using the 234Th method. These results highlight the important impact of the mesopelagic remineralisation on the biological carbon pump of the studied area with a near-zero, deep (> 1000 m) carbon sequestration efficiency in spring 2014.


2021 ◽  
Author(s):  
Zhe Jin ◽  
Xiangjun Tian ◽  
Rui Han ◽  
Yu Fu ◽  
Xin Li ◽  
...  

Abstract. Accurate assessment of the various sources and sinks of carbon dioxide (CO2), especially terrestrial ecosystem and ocean fluxes with high uncertainties, is important for understanding of the global carbon cycle, supporting the formulation of climate policies, and projecting future climate change. Satellite retrievals of the column-averaged dry air mole fractions of CO2 (XCO2) are being widely used to improve carbon flux estimation due to their broad spatial coverage. However, there is no consensus on the robust estimates of regional fluxes. In this study, we present a global and regional resolved terrestrial ecosystem carbon flux (NEE) and ocean carbon flux dataset for 2015–2019. The dataset was generated using the Tan-Tracker inversion system by assimilating Observing Carbon Observatory 2 (OCO-2) column CO2 retrievals. The posterior NEE and ocean carbon fluxes were comprehensively validated by comparing posterior simulated CO2 concentrations with OCO-2 independent retrievals and Total Carbon Column Observing Network (TCCON) measurements. The validation showed that posterior carbon fluxes significantly improved the modelling of atmospheric CO2 concentrations, with global mean biases of 0.33 ppm against OCO-2 retrievals and 0.12 ppm against TCCON measurements. We described the characteristics of the dataset at global, regional, and Tibetan Plateau scales in terms of the carbon budget, annual and seasonal variations, and spatial distribution. The posterior 5-year annual mean global atmospheric CO2 growth rate was 5.35 PgC yr−1, which was within the uncertainty of the Global Carbon Budget 2020 estimate (5.49 PgC yr−1). The posterior annual mean NEE and ocean carbon fluxes were −4.07 and −3.33 PgC yr−1, respectively. Regional fluxes were analysed based on TransCom partitioning. All 11 land regions acted as carbon sinks, except for Tropical South America, which was almost neutral. The strongest carbon sinks were located in Boreal Asia, followed by Temperate Asia and North Africa. The entire Tibetan Plateau ecosystem was estimated as a carbon sink, taking up −49.52 TgC yr−1 on average, with the strongest sink occurring in eastern alpine meadows. These results indicate that our dataset captures surface carbon fluxes well and provides insight into the global carbon cycle. The dataset can be accessed at https://doi.org/10.11888/Meteoro.tpdc.271317 (Jin et al., 2021).


Sign in / Sign up

Export Citation Format

Share Document