scholarly journals Glacial-interglacial atmospheric CO<sub>2</sub> change: a possible "standing volume" effect on deep-ocean carbon sequestration

2009 ◽  
Vol 5 (3) ◽  
pp. 537-550 ◽  
Author(s):  
L. C. Skinner

Abstract. So far, the exploration of possible mechanisms for glacial atmospheric CO2 drawdown and marine carbon sequestration has tended to focus on dynamic or kinetic processes (i.e. variable mixing-, equilibration- or export rates). Here an attempt is made to underline instead the possible importance of changes in the standing volumes of intra-oceanic carbon reservoirs (i.e. different water-masses) in influencing the total marine carbon inventory. By way of illustration, a simple mechanism is proposed for enhancing the marine carbon inventory via an increase in the volume of relatively cold and carbon-enriched deep water, analogous to modern Lower Circumpolar Deep Water (LCDW), filling the ocean basins. A set of simple box-model experiments confirm the expectation that a deep sea dominated by an expanded LCDW-like watermass holds more CO2, without any pre-imposed changes in ocean overturning rate, biological export or ocean-atmosphere exchange. The magnitude of this "standing volume effect" (which operates by boosting the solubility- and biological pumps) might be as large as the contributions that have previously been attributed to carbonate compensation, terrestrial biosphere reduction or ocean fertilisation for example. By providing a means of not only enhancing but also driving changes in the efficiency of the biological- and solubility pumps, this standing volume mechanism may help to reduce the amount of glacial-interglacial CO2 change that remains to be explained by other mechanisms that are difficult to assess in the geological archive, such as reduced mass transport or mixing rates in particular. This in turn could help narrow the search for forcing conditions capable of pushing the global carbon cycle between glacial and interglacial modes.

2009 ◽  
Vol 5 (3) ◽  
pp. 1259-1296 ◽  
Author(s):  
L. C. Skinner

Abstract. So far, the exploration of possible mechanisms for glacial atmospheric CO2 draw-down and marine carbon sequestration has focussed almost exclusively on dynamic or kinetic processes (i.e. variable mixing-, equilibration- or export rates). Here an attempt is made to underline instead the possible importance of changes in the standing volumes of intra-oceanic carbon reservoirs (i.e. different water-masses) in setting the total marine carbon inventory. By way of illustration, a simple mechanism is proposed for enhancing the carbon storage capacity of the deep sea, which operates via an increase in the volume of relatively carbon-enriched AABW-like deep-water filling the ocean basins. Given the hypsometry of the ocean floor and an active biological pump, the water-mass that fills more than the bottom 3 km of the ocean will essentially determine the carbon content of the marine reservoir. A set of simple box-model experiments confirm the expectation that a deep sea dominated by AABW-like deep-water holds more CO2, prior to any additional changes in ocean overturning rate, biological export or ocean-atmosphere exchange. The magnitude of this "standing volume effect" might be as large as the contributions that have been attributed to carbonate compensation, the thermodynamic solubility pump or the biological pump for example. If incorporated into the list of factors that have contributed to marine carbon sequestration during past glaciations, this standing volume mechanism may help to reduce the amount of glacial – interglacial CO2 change that remains to be explained by other mechanisms that are difficult to assess in the geological archive, such as reduced mass transport or mixing rates in particular. This in turn could help narrow the search for forcing conditions capable of pushing the global carbon cycle between glacial and interglacial modes.


2006 ◽  
Vol 2 (5) ◽  
pp. 711-743 ◽  
Author(s):  
L. C. Skinner

Abstract. Given the magnitude and dynamism of the deep marine carbon reservoir, it is almost certain that past glacial – interglacial fluctuations in atmospheric CO2 have relied at least in part on changes in the carbon storage capacity of the deep sea. To date, physical ocean circulation mechanisms that have been proposed as viable explanations for glacial – interglacial CO2 change have focussed almost exclusively on dynamical or kinetic processes. Here, a simple mechanism is proposed for increasing the carbon storage capacity of the deep sea that operates via changes in the volume of southern-sourced deep-water filling the ocean basins, as dictated by the hypsometry of the ocean floor. It is proposed that a water-mass that occupies more than the bottom 3 km of the ocean will essentially determine the carbon content of the marine reservoir. Hence by filling this interval with southern-sourced deep-water (enriched in dissolved CO2 due to its particular mode of formation) the amount of carbon sequestered in the deep sea may be greatly increased. A simple box-model is used to test this hypothesis, and to investigate its implications. It is suggested that up to 70% of the observed glacial – interglacial CO2 change might be explained by the replacement of northern-sourced deep-water below 2.5 km water depth by its southern counterpart. Most importantly, it is found that an increase in the volume of southern-sourced deep-water allows glacial CO2 levels to be simulated easily with only modest changes in Southern Ocean biological export or overturning. If incorporated into the list of contributing factors to marine carbon sequestration, this mechanism may help to significantly reduce the "deficit" of explained glacial – interglacial CO2 change.


2015 ◽  
Author(s):  
Sigrun H. Jonasdottir ◽  
Andre W. Visser ◽  
Katherine Richardson ◽  
Michael R. Heath

Estimates of carbon flux to the deep oceans are essential for our understanding for global carbon budgets. We identify an important mechanism, the lipid pump, that has been unrecorded in previous estimates. The seasonal lipid pump is highly efficient in sequestering carbon in the deep ocean. It involves the vertical transport and respiration of carbon rich compounds (lipids) by hibernating zooplankton. Estimates for one species, the copepod Calanus finmarchicus overwintering in the North Atlantic, sequester around the same amount of carbon as does the flux of detrital material that is usually thought of as the main component of the biological pump. The efficiency of the lipid pump derives from a near complete decoupling between nutrient and carbon cycling and directly transports carbon through the meso-pelagic with very little attenuation to below the permanent thermocline. Consequently the seasonal transport of lipids by migrating zooplankton is overlooked in estimates of deep ocean carbon sequestration by the biological pump.


2015 ◽  
Vol 112 (39) ◽  
pp. 12122-12126 ◽  
Author(s):  
Sigrún Huld Jónasdóttir ◽  
André W. Visser ◽  
Katherine Richardson ◽  
Michael R. Heath

Estimates of carbon flux to the deep oceans are essential for our understanding of global carbon budgets. Sinking of detrital material (“biological pump”) is usually thought to be the main biological component of this flux. Here, we identify an additional biological mechanism, the seasonal “lipid pump,” which is highly efficient at sequestering carbon into the deep ocean. It involves the vertical transport and metabolism of carbon rich lipids by overwintering zooplankton. We show that one species, the copepod Calanus finmarchicus overwintering in the North Atlantic, sequesters an amount of carbon equivalent to the sinking flux of detrital material. The efficiency of the lipid pump derives from a near-complete decoupling between nutrient and carbon cycling—a “lipid shunt,” and its direct transport of carbon through the mesopelagic zone to below the permanent thermocline with very little attenuation. Inclusion of the lipid pump almost doubles the previous estimates of deep-ocean carbon sequestration by biological processes in the North Atlantic.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Julia Gottschalk ◽  
Elisabeth Michel ◽  
Lena M. Thöle ◽  
Anja S. Studer ◽  
Adam P. Hasenfratz ◽  
...  

AbstractPast changes in ocean 14C disequilibria have been suggested to reflect the Southern Ocean control on global exogenic carbon cycling. Yet, the volumetric extent of the glacial carbon pool and the deglacial mechanisms contributing to release remineralized carbon, particularly from regions with enhanced mixing today, remain insufficiently constrained. Here, we reconstruct the deglacial ventilation history of the South Indian upwelling hotspot near Kerguelen Island, using high-resolution 14C-dating of smaller-than-conventional foraminiferal samples and multi-proxy deep-ocean oxygen estimates. We find marked regional differences in Southern Ocean overturning with distinct South Indian fingerprints on (early de-)glacial atmospheric CO2 change. The dissipation of this heterogeneity commenced 14.6 kyr ago, signaling the onset of modern-like, strong South Indian Ocean upwelling, likely promoted by rejuvenated Atlantic overturning. Our findings highlight the South Indian Ocean’s capacity to influence atmospheric CO2 levels and amplify the impacts of inter-hemispheric climate variability on global carbon cycling within centuries and millennia.


2011 ◽  
Vol 38 (17) ◽  
pp. n/a-n/a ◽  
Author(s):  
Andy Ridgwell ◽  
Thomas J. Rodengen ◽  
Karen E. Kohfeld

2021 ◽  
Author(s):  
Cara Nissen ◽  
Ralph Timmermann ◽  
Mario Hoppema ◽  
Judith Hauck

Abstract Antarctic Bottom Water formation, such as in the Weddell Sea, is an efficient vector for carbon sequestration on time scales of centuries. Possible changes in carbon sequestration under changing environmental conditions are unquantified to date, mainly due to difficulties in simulating the relevant processes on high-latitude continental shelves. Using a model setup including both ice-shelf cavities and oceanic carbon cycling, we demonstrate that by 2100, deep-ocean carbon accumulation in the southern Weddell Sea is abruptly attenuated to only 40% of the rate in the 1990s in a high-emission scenario, while still being 4-fold higher in the 2080s. Assessing deep-ocean carbon budgets and water mass transformations, we attribute this decline to an increased presence of Warm Deep Water on the southern Weddell Sea continental shelf, a 16% reduction in sea-ice formation, and a 79% increase in ice-shelf basal melt. Altogether, these changes lower the density and volume of newly formed bottom waters and reduce the associated carbon transport to the abyss.


2021 ◽  
Author(s):  
Zheng Tang ◽  
Zhifang Xiong ◽  
Tiegang Li

Abstract We present new geochemical evidence of changes in the vertical dissolved inorganic carbon (DIC) distribution in the western tropical Pacific over the last 700 kyr, derived from stable carbon isotope (δ13C) signals recorded in epifaunal benthic (Cibicidoides wuellerstorfi) and thermocline-dwelling planktonic (Pulleniatina obliquiloculata) foraminifera extracted from the Calypso Core MD06-3047. We further analyse the results of a transient numerical experiment of the Last Glacial Maximum (LGM) and the last deglaciation performed with the carbon isotope-enabled earth system model LOVECLIM, to understand the deglacial changes in DIC distribution and verify the proxy-based hypothesis. During glacial periods of the past 700 kyrs, the distinct negative deep water δ13CDIC values obtained from the benthic foraminifera suggest a carbon increase in the deep ocean, which could have been caused by weakening of deep Southern Ocean (SO) ventilation and enhanced marine biological productivity driven by dust-induced iron fertilization. During glacial terminations, a decrease of thermocline δ13CDIC associated with an increase in deep water δ13CDIC indicate a reduced vertical DIC gradient and the net transmission of 12C from the deep waters to the thermocline, caused mainly by the physical process (enhanced SO ventilation). On longer time scales, the largest increase in the Pacific deep carbon reservoir δ13CDIC during the marine isotope stage (MIS) 12/11 transition coincided with the mid-Brunhes climatic shift, which implies that the extent of oceanic carbon release during this interval was much larger than that during other deglaciations since 700 ka B.P. We infer that this could have been caused by reorganization of the oceanic carbon system. These findings provide new insights into the Pleistocene evolution of the carbon-cycle system in the Pacific Ocean.


Sign in / Sign up

Export Citation Format

Share Document