scholarly journals Mechanism-based sirtuin enzyme activation

2015 ◽  
Author(s):  
Xiangying Guan ◽  
Alok Upadhyay ◽  
Sudipto Munshi ◽  
Raj Chakrabarti

AbstractSirtuin enzymes are NAD+-dependent protein deacylases that play a central role in the regulation of healthspan and lifespan in organisms ranging from yeast to mammals. There is intense interest in the activation of the seven mammalian sirtuins (SIRT1-7) in order to extend mammalian healthspan and lifespan. However, there is currently no understanding of how to design sirtuin-activating compounds beyond allosteric activators of SIRT1-catalyzed reactions that are limited to particular substrates. Moreover, across all families of enzymes, only a dozen or so distinct classes of non-natural small molecule activators have been characterized, with only four known modes of activation among them. None of these modes of activation are based on the unique catalytic reaction mechanisms of the target enzymes. Here, we report a general mode of sirtuin activation that is distinct from the known modes of enzyme activation. Based on the conserved mechanism of sirtuin-catalyzed deacylation reactions, we establish biophysical properties of small molecule modulators that can in principle result in enzyme activation for diverse sirtuins and substrates. Building upon this framework, we propose strategies for the identification, characterization and evolution of hits for mechanism-based enzyme activating compounds. We characterize several small molecules reported in the literature to activate sirtuins besides SIRT1, using a variety of biochemical and biophysical techniques including label-free and labeled kinetic and thermodynamic assays with multiple substrates and protocols for the identification of false positives. We provide evidence indicating that several of these small molecules reported in the published literature are false positives, and identify others as hit compounds for the design of compounds that can activate sirtuins through the proposed mechanism-based mode of action.

Author(s):  
A Upadhyay ◽  
X Guan ◽  
S Munshi ◽  
R Chakrabarti

ABSTRACTMammalian sirtuins (SIRT1-SIRT7) are a family of nicotinamide adenine dinucleotide (NAD+)-dependent protein deacylases that play critical roles in lifespan and age-related diseases. The physiological importance of sirtuins has stimulated intense interest in designing sirtuin-activating compounds. However, except for allosteric activators of SIRT1-catalyzed reactions that are limited to particular substrates, a general framework for the design of sirtuin-activating compounds has been lacking. Recently, we introduced a general mode of sirtuin activation that is distinct from the known modes of enzyme activation, establishing biophysical properties of small molecule modulators that can, in principle, result in enzyme activation for various sirtuins and substrates. Here, we characterize small molecules reported in the literature to activate the SIRT3 enzyme using a variety of computational, biochemical and biophysical techniques including protein-ligand docking, molecular dynamics simulation, nonlinear reaction dynamics simulation, kinetic assays and thermodynamic assays with multiple substrates and protocols. In particular, we identify the mechanism of action of the compound honokiol on the human SIRT3 enzyme, modeling its effect on active site conformational degrees of freedom and demonstrating how it nonallosterically activates the human SIRT3 enzyme under physiologically relevant conditions. We show that honokiol constitutes a hit compound for the design of a new generation of nonallosteric activators that can activate SIRT3 through the proposed mechanism-based mode of activation.


2020 ◽  
Author(s):  
Rhushabh Maugi ◽  
bernadette gamble ◽  
david bunka ◽  
Mark Platt

A universal aptamer-based sensing strategy is proposed using DNA modified nanocarriers and Resistive Pulse Sensing for the rapid and label free detection of small molecules. The surface of a magnetic nanocarrier was first modified with a ssDNA aka linker which is designed to be partially complimentary in sequence to a ssDNA aptamer. The aptamer and linker form a stable dsDNA complex on the nanocarriers surface. Upon the addition of the target molecule, a conformational change takes place where the aptamer preferentially binds to the target over the linker; causing the aptamer to be released into solution. The RPS measures the change in velocity of the nanocarrier as its surface changes from dsDNA to ssDNA, and its velocity is used as a proxy for the concentration of the target. We illustrate the versatility of the assay by demonstrating the detection of the antibiotic Moxifloxacin, and chemotherapeutics Imatinib and Irinotecan.


2018 ◽  
Author(s):  
Matthias Christen ◽  
Cassandra Kamischke ◽  
Hemantha D. Kulasekara ◽  
Kathleen C. Olivas ◽  
Bridget R. Kulasekara ◽  
...  

The bacterial second messenger cyclic diguanosine monophosphate (c-di-GMP) is a key regulator of cellular motility, the cell cycle, and biofilm formation with its resultant antibiotic tolerance, which may make chronic infections difficult to treat. Therefore, diguanylate cyclases, which regulate the spatiotemporal production of c-di-GMP, may be attractive drug targets to control biofilm formation that is part of chronic infections. In this paper, we present a FRET-based biochemical high-throughput screening approach coupled with detailed structure-activity studies to identify synthetic small molecule modulators of the diguanylate cyclase, DgcA, from Caulobacter crescentus. We identified a set of 7 small molecules that in the low µM range regulate DgcA enzymatic activity. Subsequent structure activity studies on selected scaffolds revealed a remarkable diversity of modulatory behaviors, including slight chemical substitutions that revert the effects from allosteric enzyme inhibition to activation. The compounds identified represent novel chemotypes and are potentially developable into chemical genetic tools for the dissection of c-di-GMP signaling networks and alteration of c-di-GMP associated phenotypes. In sum, our studies underline the importance for detailed mechanism of action studies for inhibitors of c-di-GMP signaling and demonstrate the complex interplay between synthetic small molecules and the regulatory mechanisms that control the activity of diguanylate cyclases.


Author(s):  
Xiangying Guan ◽  
Alok Upadhyay ◽  
Raj Chakrabarti

Compared to inhibitors, which constitute the vast majority of today’s drugs, enzyme activators have considerable advantages, especially in the context of enzymes that regulate reactive flux through metabolic pathways associated with chronic, age-related diseases and lifespan. Across all families of enzymes, only a dozen or so distinct classes of small molecule activators have been characterized. Enzyme activators that are not based on naturally evolved allosteric mechanisms are much more difficult to design than inhibitors, because enzymatic catalysis has been optimized over billions of years of evolution. Here, we introduce modes of enzyme activation based on the catalytic reaction mechanisms of enzymes for which naturally evolved activators may not exist. We establish biophysical properties of small molecule modulators that are necessary to achieve desired changes in the steady state and non-steady state parameters of these enzymes, including changes in local conformational degrees of freedom conducive to the enhancement of catalytic activity that can be identified through computational modeling of their active sites. We illustrate how the modes of action of several compounds reported to activate enzymes without known allosteric sites may be understood using the framework presented. We also present simulations and new experimental results in support of this framework, including identification of the mechanism of a compound that activates the human SIRT3 enzyme, which does not contain a known allosteric site, under physiologically relevant conditions.


2021 ◽  
Author(s):  
Frances M Potjewyd ◽  
Joel K Annor-Gyamfi ◽  
Jeffrey Aube ◽  
Shaoyou Chu ◽  
Ivie L Conlon ◽  
...  

Introduction: The portfolio of novel targets to treat Alzheimer's disease (AD) has been enriched by the AMP-AD program. Methods: A cheminformatics-driven effort enabled identification of existing small molecule modulators for many protein targets nominated by AMP-AD and suitable positive control compounds to be included in the set. Results: We have built an annotated set of 171 small molecule modulators, including mostly inhibitors, targeting 98 unique proteins that have been nominated by AMP-AD consortium members as novel targets for AD treatment. These small molecules vary in their quality and should be considered chemical tools that can be used in efforts to validate therapeutic hypotheses, but which would require further optimization. A physical copy of the AD Informer Set can be ordered via the AD Knowledge Portal. Discussion: Small molecule tools that enable target validation are important tools for the translation of novel hypotheses into viable therapeutic strategies for AD.


2014 ◽  
Vol 50 (15) ◽  
pp. 1900-1902 ◽  
Author(s):  
Bingqian Liu ◽  
Bing Zhang ◽  
Guonan Chen ◽  
Dianping Tang

A novel, label-free omega-like DNA nanostructure was for the first time utilized for the homogenous electronic monitoring of small molecules (ATP used in this case) accompanying the formation of DNAzyme–aptamer conjugates upon target analyte introduction.


2020 ◽  
Author(s):  
Rhushabh Maugi ◽  
bernadette gamble ◽  
david bunka ◽  
Mark Platt

A universal aptamer-based sensing strategy is proposed using DNA modified nanocarriers and Resistive Pulse Sensing for the rapid and label free detection of small molecules. The surface of a magnetic nanocarrier was first modified with a ssDNA aka linker which is designed to be partially complimentary in sequence to a ssDNA aptamer. The aptamer and linker form a stable dsDNA complex on the nanocarriers surface. Upon the addition of the target molecule, a conformational change takes place where the aptamer preferentially binds to the target over the linker; causing the aptamer to be released into solution. The RPS measures the change in velocity of the nanocarrier as its surface changes from dsDNA to ssDNA, and its velocity is used as a proxy for the concentration of the target. We illustrate the versatility of the assay by demonstrating the detection of the antibiotic Moxifloxacin, and chemotherapeutics Imatinib and Irinotecan.


Biochemistry ◽  
2015 ◽  
Vol 54 (13) ◽  
pp. 2240-2248 ◽  
Author(s):  
Latesh Lad ◽  
Sheila Clancy ◽  
David Koditek ◽  
Melanie H. Wong ◽  
Debi Jin ◽  
...  

2021 ◽  
Author(s):  
Clément Sester

<p><b>Aptamers are synthetic nucleic acid single-stranded oligonucleotides that bind to a wide range of ligands, including cells, proteins, DNA strands, metal ions, and small molecules, with high specificity and affinity. Aptamers have also proven to be highly stable, readily adaptable to chemical modifications, and exhibit reversible binding. As a result, aptamer-based biosensors (aptasensors) are promising replacements for antibody-based biosensors in many applications, particularly for small molecule ligands. This thesis explores an aptamer that binds the drug methamphetamine, and its prospects when incorporated in an electrochemical (e-chem) signal transduction platform. Specifically, we examine the range of interactions between the aptamer and ligand, and with electrodes, and identify a number of challenges in generating robust e-chem aptasensors.</b></p> <p>Due to their size and limited number of functional groups, further understanding of the aptamer-small molecule ligand interactions is required for the design of future aptasensors – particularly the thermodynamics and structural information about the aptamer-ligand interaction. In fact, detecting small molecules with aptasensors can become challenging because target addition may induce little structural change, and therefore numerous nonspecific interactions may emerge as transduced signals from the biosensor. In this thesis, the combination of spectroscopic and calorimetric analytical techniques reveals a conformational selection binding model, in which binding is entropically driven, and the meth binds via hydrophobic and electrostatic interactions and only induces a modest structural change. This first-of-its-kind study is important for the selection and the design of the aptasensor transduction system.</p> <p>Electrochemical (e-chem) aptasensors offer high inherent sensitivity and practicality as a signal transduction platform. Indeed, different e-chem aptasensor formats have been published before, including labelled and label-free sensors. In screening the viability of three commonly used methods – including labelled and label-free, as well voltammetric and impedance-based methods – we find that each of them suffers from instability of the aptamer-functionalised electrode. This instability compromises our ability to resolve real signals and prompted us to develop ways to understand – and suppress – this baseline drift.</p> <p>The functionalization of the electrode is the critical step in terms of self-assembled monolayer (SAM) stability and SAM aptamer density. Consequently, different protocols of SAMformation were explored and evaluated with respect to stability. We find that instability arises from the uncontrolled arrangement of thiolated aptamers on gold electrodes (including aptamers lying down on the electrode), which is in turn affected by the density of aptamers that can be coupled to the surface. As a consequence, a new protocol is developed using disulfide aptamer pairs to increase the density of correctly tethered aptamers, and generate a stable SAM.</p> <p>Because of the high sensitivity of electrochemical platforms, numerous spurious electrochemical signals may be produced, and controlled for in order to confirm a positive ligand-binding signal. The specificity of the aptamer-target interaction can be checked by testing the response with an interferent molecule, or by substituting the aptamer with a non-binding nucleotide sequence. In this work, these control experiments reveal that target and interferent molecules interact directly (and in different ways) with the bare gold surface, as well as perturbing signals from the aptamer in ways that cannot be linked to a specific aptamer-ligand complex formation. Ultimately, these spurious signals compromise our ability to confirm a real binding signal.</p> <p>The results from this work provide the first clear picture of how an aptamer binds to its small molecule target – which we find is entropically driven, and with only minor structural change induced in the aptamer stem. In addition, the label-free EIS measurements on aptamer SAM electrodes reveal the nature of instabilities, and reveal spurious signals that cannot be sufficiently suppressed at this stage. This knowledge highlights the difficulty in fabricating e-chem aptasensors, and will assist in overcoming challenges faced during research and commercialization of aptasensors area, as well as contributing new insights into troubleshooting, data acquisition, and data validation.</p>


2021 ◽  
Author(s):  
Clément Sester

<p><b>Aptamers are synthetic nucleic acid single-stranded oligonucleotides that bind to a wide range of ligands, including cells, proteins, DNA strands, metal ions, and small molecules, with high specificity and affinity. Aptamers have also proven to be highly stable, readily adaptable to chemical modifications, and exhibit reversible binding. As a result, aptamer-based biosensors (aptasensors) are promising replacements for antibody-based biosensors in many applications, particularly for small molecule ligands. This thesis explores an aptamer that binds the drug methamphetamine, and its prospects when incorporated in an electrochemical (e-chem) signal transduction platform. Specifically, we examine the range of interactions between the aptamer and ligand, and with electrodes, and identify a number of challenges in generating robust e-chem aptasensors.</b></p> <p>Due to their size and limited number of functional groups, further understanding of the aptamer-small molecule ligand interactions is required for the design of future aptasensors – particularly the thermodynamics and structural information about the aptamer-ligand interaction. In fact, detecting small molecules with aptasensors can become challenging because target addition may induce little structural change, and therefore numerous nonspecific interactions may emerge as transduced signals from the biosensor. In this thesis, the combination of spectroscopic and calorimetric analytical techniques reveals a conformational selection binding model, in which binding is entropically driven, and the meth binds via hydrophobic and electrostatic interactions and only induces a modest structural change. This first-of-its-kind study is important for the selection and the design of the aptasensor transduction system.</p> <p>Electrochemical (e-chem) aptasensors offer high inherent sensitivity and practicality as a signal transduction platform. Indeed, different e-chem aptasensor formats have been published before, including labelled and label-free sensors. In screening the viability of three commonly used methods – including labelled and label-free, as well voltammetric and impedance-based methods – we find that each of them suffers from instability of the aptamer-functionalised electrode. This instability compromises our ability to resolve real signals and prompted us to develop ways to understand – and suppress – this baseline drift.</p> <p>The functionalization of the electrode is the critical step in terms of self-assembled monolayer (SAM) stability and SAM aptamer density. Consequently, different protocols of SAMformation were explored and evaluated with respect to stability. We find that instability arises from the uncontrolled arrangement of thiolated aptamers on gold electrodes (including aptamers lying down on the electrode), which is in turn affected by the density of aptamers that can be coupled to the surface. As a consequence, a new protocol is developed using disulfide aptamer pairs to increase the density of correctly tethered aptamers, and generate a stable SAM.</p> <p>Because of the high sensitivity of electrochemical platforms, numerous spurious electrochemical signals may be produced, and controlled for in order to confirm a positive ligand-binding signal. The specificity of the aptamer-target interaction can be checked by testing the response with an interferent molecule, or by substituting the aptamer with a non-binding nucleotide sequence. In this work, these control experiments reveal that target and interferent molecules interact directly (and in different ways) with the bare gold surface, as well as perturbing signals from the aptamer in ways that cannot be linked to a specific aptamer-ligand complex formation. Ultimately, these spurious signals compromise our ability to confirm a real binding signal.</p> <p>The results from this work provide the first clear picture of how an aptamer binds to its small molecule target – which we find is entropically driven, and with only minor structural change induced in the aptamer stem. In addition, the label-free EIS measurements on aptamer SAM electrodes reveal the nature of instabilities, and reveal spurious signals that cannot be sufficiently suppressed at this stage. This knowledge highlights the difficulty in fabricating e-chem aptasensors, and will assist in overcoming challenges faced during research and commercialization of aptasensors area, as well as contributing new insights into troubleshooting, data acquisition, and data validation.</p>


Sign in / Sign up

Export Citation Format

Share Document