scholarly journals Ribo-attenuators: novel elements for reliable and modular riboswitch engineering

2016 ◽  
Author(s):  
Thomas Folliard ◽  
Barbara Mertins ◽  
Thomas P Prescott ◽  
Harrison Steel ◽  
Thomas Newport ◽  
...  

AbstractRiboswitches are structural genetic regulatory elements that directly couple the sensing of small molecules to gene expression. They have considerable potential for applications throughout synthetic biology and bio-manufacturing as they are able to sense a wide range of small molecules and regulate gene expression in response. Despite over a decade of research they have yet to reach this considerable potential as they cannot yet be treated as modular components. This is due to several limitations including sensitivity to changes in genetic context, low tunability, and variability in performance. To overcome the associated difficulties with riboswitches, we have designed and introduced a novel genetic element called a Ribo-attenuator in Bacteria. This genetic element allows for predictable tuning, insulation from contextual changes, and a reduction in expression variation. Ribo-attenuators allow riboswitches to be treated as truly modular and tunable components, and thus increases their reliability for a wide range of applications.

2019 ◽  
Author(s):  
Benjamin R. Jack ◽  
Daniel R. Boutz ◽  
Matthew L. Paff ◽  
Bartram L. Smith ◽  
Claus O. Wilke

AbstractMany viral genomes are small, containing only single- or double-digit numbers of genes and relatively few regulatory elements. Yet viruses successfully execute complex regulatory programs as they take over their host cells. Here, we propose that some viruses regulate gene expression via a carefully balanced interplay between transcription, translation, and transcript degradation. As our model system, we employ bacteriophage T7, whose genome of approximately 60 genes is well annotated and for which there is a long history of computational models of gene regulation. We expand upon prior modeling work by implementing a stochastic gene expression simulator that tracks individual transcripts, polymerases, ribosomes, and RNases participating in the transcription, translation, and transcript-degradation processes occurring during a T7 infection. By combining this detailed mechanistic modeling of a phage infection with high throughput gene expression measurements of several strains of bacteriophage T7, evolved and engineered, we can show that both the dynamic interplay between transcription and transcript degradation, and between these two processes and translation, appear to be critical components of T7 gene regulation. Our results point to a generic gene regulation strategy that may have evolved in many other viruses. Further, our results suggest that detailed mechanistic modeling may uncover the biological mechanisms at work in both evolved and engineered virus variants.


2020 ◽  
Vol 19 (03) ◽  
pp. 2040001 ◽  
Author(s):  
Ting Zhou ◽  
Huiwen Wang ◽  
Linlu Song ◽  
Yunjie Zhao

Riboswitch can bind small molecules to regulate gene expression. Unlike other RNAs, riboswitch relies on its conformational switching for regulation. However, the understanding of the switching mechanism is still limited. Here, we focussed on the add A-riboswitch to illustrate the dynamical switching mechanism as an example. We performed molecular dynamics simulation, conservation and co-evolution calculations to infer the dynamical motions and evolutionary base pairings. The results suggest that the binding domain is stable for molecule recognition and binding, whereas the switching base pairings are co-evolutionary for translation. The understanding of the add A-riboswitch switching mechanism provides a potential solution for riboswitch drug design.


2015 ◽  
Vol 87 (4) ◽  
pp. 2189-2203 ◽  
Author(s):  
CAROLINA LIXA ◽  
AMANDA MUJO ◽  
CRISTIANE D. ANOBOM ◽  
ANDERSON S. PINHEIRO

Bacteria are able to synchronize the population behavior in order to regulate gene expression through a cell-to-cell communication mechanism called quorum sensing. This phenomenon involves the production, detection and the response to extracellular signaling molecules named autoinducers, which directly or indirectly regulate gene expression in a cell density-dependent manner. Quorum sensing may control a wide range of biological processes in bacteria, such as bioluminescence, virulence factor production, biofilm formation and antibiotic resistance. The autoinducers are recognized by specific receptors that can either be membrane-bound histidine kinase receptors, which work by activating cognate cytoplasmic response regulators, or cytoplasmic receptors acting as transcription factors. In this review, we focused on the cytosolic quorum sensing regulators whose three-dimensional structures helped elucidate their mechanisms of action. Structural studies of quorum sensing receptors may enable the rational design of inhibitor molecules. Ultimately, this approach may represent an effective alternative to treat infections where classical antimicrobial therapy fails to overcome the microorganism virulence.


2019 ◽  
Vol 5 (2) ◽  
Author(s):  
Benjamin R Jack ◽  
Daniel R Boutz ◽  
Matthew L Paff ◽  
Bartram L Smith ◽  
Claus O Wilke

Abstract Many viral genomes are small, containing only single- or double-digit numbers of genes and relatively few regulatory elements. Yet viruses successfully execute complex regulatory programs as they take over their host cells. Here, we propose that some viruses regulate gene expression via a carefully balanced interplay between transcription, translation, and transcript degradation. As our model system, we employ bacteriophage T7, whose genome of approximately sixty genes is well annotated and for which there is a long history of computational models of gene regulation. We expand upon prior modeling work by implementing a stochastic gene expression simulator that tracks individual transcripts, polymerases, ribosomes, and ribonucleases participating in the transcription, translation, and transcript-degradation processes occurring during a T7 infection. By combining this detailed mechanistic modeling of a phage infection with high-throughput gene expression measurements of several strains of bacteriophage T7, evolved and engineered, we can show that both the dynamic interplay between transcription and transcript degradation, and between these two processes and translation, appear to be critical components of T7 gene regulation. Our results point to targeted degradation as a generic gene regulation strategy that may have evolved in many other viruses. Further, our results suggest that detailed mechanistic modeling may uncover the biological mechanisms at work in both evolved and engineered virus variants.


2015 ◽  
Vol 51 (5) ◽  
pp. 820-831 ◽  
Author(s):  
Gopal Gunanathan Jayaraj ◽  
Smita Nahar ◽  
Souvik Maiti

MicroRNAs (miRNAs) are a class of genomically encoded small RNA molecules (∼22nts in length), which regulate gene expression post transcriptionally. miRNAs are implicated in several diseases, thus modulation of miRNA is of prime importance. Small molecules offer a non-conventional alternative to do so.


2020 ◽  
Author(s):  
Asa Thibodeau ◽  
Shubham Khetan ◽  
Alper Eroglu ◽  
Ryan Tewhey ◽  
Michael L. Stitzel ◽  
...  

AbstractCis-Regulatory elements (cis-REs) include promoters, enhancers, and insulators that regulate gene expression programs via binding of transcription factors. ATAC-seq technology effectively identifies active cis-REs in a given cell type (including from single cells) by mapping accessible chromatin at base-pair resolution. However, these maps are not immediately useful for inferring specific functions of cis-REs. For this purpose, we developed a deep learning framework (CoRE-ATAC) with novel data encoders that integrate DNA sequence (reference or personal genotypes) with ATAC-seq cut sites and read pileups. CoRE-ATAC was trained on 4 cell types (n=6 samples/replicates) and accurately predicted known cis-RE functions from 7 cell types (n=40 samples) that were not used in model training (mean average precision=0.80). CoRE-ATAC enhancer predictions from 19 human islet samples coincided with genetically modulated gain/loss of enhancer activity, which was confirmed by massively parallel reporter assays (MPRAs). Finally, CoRE-ATAC effectively inferred cis-RE function from aggregate single nucleus ATAC-seq (snATAC) data from human blood-derived immune cells that overlapped with known functional annotations in sorted immune cells, which established the efficacy of these models to study cis-RE functions of rare cells without the need for cell sorting. ATAC-seq maps from primary human cells reveal individual- and cell-specific variation in cis-RE activity. CoRE-ATAC increases the functional resolution of these maps, a critical step for studying regulatory disruptions behind diseases.Author SummaryNon-coding DNA sequences serve different functional roles to regulate gene expression. For these sequences to be active, they must be accessible for proteins and other factors to bind in order to carry out a specific regulatory function. Even so, mutations within these sequences or other regulatory events may modulate their activity or regulatory function. It is therefore critical that we identify these non-coding sequences and their specific regulatory function to fully understand how specific genes are regulated. Current sequencing technologies allow us to identify accessible sequences via chromatin accessibility maps from low cell numbers, enabling the study of clinical samples. However, determining the functional role associated with these sequences remains a challenge. Towards this goal, we harnessed the power of deep learning to unravel the intricacies of chromatin accessibility maps to infer their associated gene regulatory functions. We demonstrate that our method, CoRE-ATAC, can infer regulatory functions in diverse cell types, captures activity differences modulated by genetic mutations, and can be applied to accessibility maps of single cell clusters to infer regulatory functions of rare cell populations. These inferences will further our understanding of how genes are regulated and enable the study of these mechanisms as they relate to disease.


1992 ◽  
Vol 66 (1) ◽  
pp. 95-105 ◽  
Author(s):  
A M Colberg-Poley ◽  
L D Santomenna ◽  
P P Harlow ◽  
P A Benfield ◽  
D J Tenney

Sign in / Sign up

Export Citation Format

Share Document