scholarly journals Temporal anticipation based on memory

2016 ◽  
Author(s):  
André M. Cravo ◽  
Gustavo Rohenkohl ◽  
Karin Moreira Santos ◽  
Anna C. Nobre

AbstractThe fundamental role that our long-term memories play in guiding perception is increasingly recognised, but the functional and neural mechanisms are just beginning to be explored. Though experimental approaches are being developed to investigate the influence of long-term memories on perception, these remain mostly static and neglect their temporal and dynamic nature. Here we show we show that our long-term memories can guide attention proactively and dynamically based on learned temporal associations. Across two experiments we found that detection and discrimination of targets appearing within previously learned contexts are enhanced when the timing of target appearance matches the learned temporal contingency. Neural markers of temporal preparation revealed that the learned temporal associations trigger specific temporal predictions. Our findings emphasize the ecological role that memories play in predicting and preparing perception of anticipated events, calling for revision of the usual conceptualisation of contextual associative memory as a reflective and retroactive function.

2017 ◽  
Vol 29 (12) ◽  
pp. 2081-2089 ◽  
Author(s):  
André M. Cravo ◽  
Gustavo Rohenkohl ◽  
Karin Moreira Santos ◽  
Anna C. Nobre

The fundamental role that our long-term memories play in guiding perception is increasingly recognized, but the functional and neural mechanisms are just beginning to be explored. Although experimental approaches are being developed to investigate the influence of long-term memories on perception, these remain mostly static and neglect their temporal and dynamic nature. Here, we show that our long-term memories can guide attention proactively and dynamically based on learned temporal associations. Across two experiments, we found that detection and discrimination of targets appearing within previously learned contexts are enhanced when the timing of target appearance matches the learned temporal contingency. Neural markers of temporal preparation revealed that the learned temporal associations trigger specific temporal predictions. Our findings emphasize the ecological role that memories play in predicting and preparing perception of anticipated events, calling for revision of the usual conceptualization of contextual associative memory as a reflective and retroactive function.


2021 ◽  
Author(s):  
Alexandra O Cohen ◽  
Morgan M Glover ◽  
Xinxu Shen ◽  
Camille V Phaneuf ◽  
Kristen N Avallone ◽  
...  

Reward motivation enhances memory through interactions between mesolimbic, hippocampal, and cortical systems - both during and after encoding. Developmental changes in these distributed neural circuits may lead to age-related differences in reward-motivated memory and the underlying neural mechanisms. Converging evidence from cross-species studies suggests that subcortical dopamine signaling is increased during adolescence, which may lead to stronger memory representations of rewarding, relative to mundane, events and changes in the contributions of underlying subcortical and cortical brain mechanisms across age. Here, we used fMRI to examine how reward motivation influences the "online" encoding and "offline" post-encoding brain mechanisms that support long-term associative memory from childhood to adulthood. We found that reward motivation led to both age-invariant as well as adolescent-specific enhancements in associative memory after 24 hours. Furthermore, reward-related memory benefits were linked to age-varying neural mechanisms. During encoding, interactions between the prefrontal cortex and ventral tegmental area (VTA) were associated with better high-reward memory to a greater degree with increasing age. Pre- to post-encoding changes in functional connectivity between the anterior hippocampus and VTA were also associated with better high-reward memory, but more so at younger ages. Our findings suggest that there may be developmental shifts - from offline subcortical to online cortical processes - in the brain mechanisms supporting reward-motivated memory.


Life ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 81
Author(s):  
Nisrin El Mlili ◽  
Hanan Ahabrach ◽  
Omar Cauli

Cortisol is the end product of the hypothalamic-pituitary-adrenal (HPA) axis, and its production is increased mainly in stressful situations or in chronic disorders accompanied by stress enhancement. Altered cortisol concentrations have been reported in a number of neuropsychiatric diseases and sleep disorders. Cortisol concentrations have been measured using several methods, and in several matrixes, such as blood, saliva, and urine. However, lately, hair cortisol, for several reasons, has emerged as a promising biomarker of long-term retrospective HPA activation. Several experimental approaches for cortisol measurement with the corresponding concentration reference ranges and a summary of findings from scientific literature on this field are presented. There is evidence of a close relationship between HPA functional alteration and the development of neuropsychiatric disorders. Sleep disorders are the most common manifestation in several neuropsychiatric conditions, and have also been associated to cortisol alterations in both adults and children. Many studies indicate that hair cortisol constitutes a valuable tool for further contributing to existing data on salivary, plasma, or urinary cortisol concentrations in patients with sleep disorders.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Giansimone Perrino ◽  
Sara Napolitano ◽  
Francesca Galdi ◽  
Antonella La Regina ◽  
Davide Fiore ◽  
...  

AbstractThe cell cycle is the process by which eukaryotic cells replicate. Yeast cells cycle asynchronously with each cell in the population budding at a different time. Although there are several experimental approaches to synchronise cells, these usually work only in the short-term. Here, we build a cyber-genetic system to achieve long-term synchronisation of the cell population, by interfacing genetically modified yeast cells with a computer by means of microfluidics to dynamically change medium, and a microscope to estimate cell cycle phases of individual cells. The computer implements a controller algorithm to decide when, and for how long, to change the growth medium to synchronise the cell-cycle across the population. Our work builds upon solid theoretical foundations provided by Control Engineering. In addition to providing an avenue for yeast cell cycle synchronisation, our work shows that control engineering can be used to automatically steer complex biological processes towards desired behaviours similarly to what is currently done with robots and autonomous vehicles.


2009 ◽  
Vol 65 ◽  
pp. S236
Author(s):  
Seiki Konishi ◽  
Ken-ichiro Yamashita ◽  
Satoshi Hirose ◽  
Akira Kunimatsu ◽  
Shigeki Aoki ◽  
...  

2020 ◽  
Author(s):  
Giansimone Perrino ◽  
Sara Napolitano ◽  
Francesca Galdi ◽  
Antonella La Regina ◽  
Davide Fiore ◽  
...  

ABSTRACTThe cell cycle is the process by which eukaryotic cells replicate. Yeast cells cycle asynchronously with each cell in the population budding at a different time. Although there are several experimental approaches to “synchronise” cells, these work only in the short-term. Here, we built a cyber-genetic system to achieve long-term synchronisation of the cell population, by interfacing genetically modified yeast cells with a computer by means of microfluidics to dynamically change medium, and a microscope to estimate cell cycle phases of individual cells. The computer implements a “controller” algorithm to decide when, and for how long, to change the growth medium to synchronise the cell-cycle across the population. Our work builds upon solid theoretical foundations provided by Control Engineering. In addition to providing a new avenue for yeast cell cycle synchronisation, our work shows that computers can automatically steer complex biological processes towards desired behaviours similarly to what is currently done with robots and autonomous vehicles.


Sign in / Sign up

Export Citation Format

Share Document