scholarly journals Disequilibrium of fire-prone forests sets the stage for a rapid decline in conifer dominance during the 21st century

2017 ◽  
Author(s):  
Josep M. Serra-Diaz ◽  
Charles Maxwell ◽  
Melissa S. Lucash ◽  
Robert M. Scheller ◽  
Danelle M. Laflower ◽  
...  

AbstractAs trees are long-lived organisms, the impacts of climate change on forest communities may not be apparent on the time scale of years to decades. While lagged responses to environmental change are common in forested systems, potential for abrupt transitions under climate change may occur in environments where alternative vegetation states are influenced by disturbances, such as fire. The Klamath mountains (northern California and southwest Oregon, USA) are currently dominated by carbon rich and hyper-diverse temperate conifer forests, but climate change could disrupt the mechanisms promoting forest stability– regeneration and fire tolerance— via shifts in the fire regime in conjunction with lower fitness of conifers under a hotter climate. Understanding how this landscape will respond to near-term climate change (before 2100) is critical for predicting potential climate change feedbacks and to developing sound forest conservation and management plans. Using a landscape simulation model, we estimate that 1/3 of the Klamath could transition from conifer forest to shrub/hardwood chaparral, triggered by an enhanced fire activity coupled with lower post-fire conifer establishment. Such shifts were more prevalent under higher climate change forcing (RCP 8.5) but were also simulated under the climate of 1950-2000, reflecting the joint influences of early warming trends and historical forest legacies. Our results demonstrate that there is a large potential for loss of conifer forest dominance—and associated carbon stocks and biodiversity- in the Klamath before the end of the century, and that some losses would likely occur even without the influence of climate change. Thus, in the Klamath and other forested landscapes subject to similar feedback dynamics, major ecosystem shifts should be expected when climate change disrupts key stabilizing feedbacks that maintain the dominance of long-lived, slowly regenerating trees.

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
K. K. Holsman ◽  
A. C. Haynie ◽  
A. B. Hollowed ◽  
J. C. P. Reum ◽  
K. Aydin ◽  
...  

Abstract Climate change is impacting fisheries worldwide with uncertain outcomes for food and nutritional security. Using management strategy evaluations for key US fisheries in the eastern Bering Sea we find that Ecosystem Based Fisheries Management (EBFM) measures forestall future declines under climate change over non-EBFM approaches. Yet, benefits are species-specific and decrease markedly after 2050. Under high-baseline carbon emission scenarios (RCP 8.5), end-of-century (2075–2100) pollock and Pacific cod fisheries collapse in >70% and >35% of all simulations, respectively. Our analysis suggests that 2.1–2.3 °C (modeled summer bottom temperature) is a tipping point of rapid decline in gadid biomass and catch. Multiyear stanzas above 2.1 °C become commonplace in projections from ~2030 onward, with higher agreement under RCP 8.5 than simulations with moderate carbon mitigation (i.e., RCP 4.5). We find that EBFM ameliorates climate change impacts on fisheries in the near-term, but long-term EBFM benefits are limited by the magnitude of anticipated change.


Ecosystems ◽  
2021 ◽  
Author(s):  
Laura Marqués ◽  
Drew M. P. Peltier ◽  
J. Julio Camarero ◽  
Miguel A. Zavala ◽  
Jaime Madrigal-González ◽  
...  

AbstractLegacies of past climate conditions and historical management govern forest productivity and tree growth. Understanding how these processes interact and the timescales over which they influence tree growth is critical to assess forest vulnerability to climate change. Yet, few studies address this issue, likely because integrated long-term records of both growth and forest management are uncommon. We applied the stochastic antecedent modelling (SAM) framework to annual tree-ring widths from mixed forests to recover the ecological memory of tree growth. We quantified the effects of antecedent temperature and precipitation up to 4 years preceding the year of ring formation and integrated management effects with records of harvesting intensity from historical forest management archives. The SAM approach uncovered important time periods most influential to growth, typically the warmer and drier months or seasons, but variation among species and sites emerged. Silver fir responded primarily to past climate conditions (25–50 months prior to the year of ring formation), while European beech and Scots pine responded mostly to climate conditions during the year of ring formation and the previous year, although these responses varied among sites. Past management and climate interacted in such a way that harvesting promoted growth in young silver fir under wet and warm conditions and in old European beech under drier and cooler conditions. Our study shows that the ecological memory associated with climate legacies and historical forest management is species-specific and context-dependent, suggesting that both aspects are needed to properly evaluate forest functioning under climate change.


2021 ◽  
Author(s):  
Jie Zhao ◽  
Chao Yue ◽  
Philippe Ciais ◽  
Xin Hou ◽  
Qi Tian

<p>Wildfire is the most prevalent natural disturbance in the North American boreal (BNA) forest and can cause post-fire land surface temperature change (ΔLST<sub>fire</sub>) through biophysical processes. Fire regimes, such as fire severity, fire intensity and percentage of burned area (PBA), might affect ΔLST<sub>fire</sub> through their impacts on post-fire vegetation damage. However, the difference of the influence of different fire regimes on the ΔLST<sub>fire</sub> has not been quantified in previous studies, despite ongoing and projected changes in fire regimes in BNA in association with climate change. Here we employed satellite observations and a space-and-time approach to investigate diurnal ΔLST<sub>fire</sub> one year after fire across BNA. We further examined potential impacts of three fire regimes (i.e., fire intensity, fire severity and PBA) and latitude on ΔLST<sub>fire</sub> by simple linear regression analysis and multiple linear regression analysis in a stepwise manner. Our results demonstrated pronounced asymmetry in diurnal ΔLST<sub>fire</sub>, characterized by daytime warming in contrast to nighttime cooling over most BNA. Such diurnal ΔLST<sub>fire</sub> also exhibits a clear latitudinal pattern, with stronger daytime warming and nighttime cooling one year after fire in lower latitudes, whereas in high latitudes fire effects are almost neutral. Among the fire regimes, fire severity accounted for the most (43.65%) of the variation of daytime ΔLST<sub>fire</sub>, followed by PBA (11.6%) and fire intensity (8.5%). The latitude is an important factor affecting the influence of fire regimes on daytime ΔLST<sub>fire</sub>. The sensitivity of fire intensity and PBA impact on daytime ΔLST<sub>fire</sub> decreases with latitude. But only fire severity had a significant effect on nighttime ΔLST<sub>fire</sub> among three fire regimes. Our results highlight important fire regime impacts on daytime ΔLST<sub>fire</sub>, which might play a critical role in catalyzing future boreal climate change through positive feedbacks between fire regime and post-fire surface warming.</p>


2020 ◽  
Author(s):  
Ema Maria Bargh ◽  
SL Douglas ◽  
Annie Te One

In this article, we explore how Maori tribal organisations are responding to calls by other Indigenous peoples to become more sustainable in a time of climate change. From a close examination of tribal Environmental Management Plans, we move to a specific case study in the Bay of Plenty area, Ngati Kea/Ngati Tuara. Ultimately, we suggest that many tribal organisations are seeking to respond to climate change and transition to becoming producers of their own food and energy needs, and are often articulating these responses in relation to specific local resources and contexts. © 2014 New Zealand Geographical Society.


2017 ◽  
Vol 32 (5) ◽  
pp. 953-969 ◽  
Author(s):  
Melissa S. Lucash ◽  
Robert M. Scheller ◽  
Eric J. Gustafson ◽  
Brian R. Sturtevant

Oryx ◽  
2010 ◽  
Vol 44 (2) ◽  
pp. 213-218 ◽  
Author(s):  
Martin Dallimer ◽  
Martim Melo

AbstractTerrestrial and freshwater molluscs are amongst the most threatened of all taxa, yet data exist on the distribution and status of only a small proportion of the species. Here we present the results of the first systematic survey of a terrestrial mollusc on the island of Príncipe in the Gulf of Guinea. Archachatina bicarinata has never been previously surveyed, despite being categorized as Vulnerable on the IUCN Red List and suffering from unregulated harvesting for food. We found that A. bicarinata is restricted to primary rainforest and its abundance and probability of occurrence increased as surveyed sites became less accessible. Additional anecdotal evidence from the observations of previous scientific expeditions, local guides and snail harvesters suggested that the species has suffered a dramatic decline in population size and distribution in recent years. We therefore recommend that immediate action be taken to prevent its imminent extinction on Príncipe. The collection of A. bicarinata from protected areas should be banned, as should commercial harvesting and sales. Subsistence collecting should be limited to larger individuals. Our data have been used to inform the management plans for the protected areas on Príncipe and São Tomé, and this should help to ensure the future of A. bicarinata on both islands.


<em>Abstract</em>.-Climate change can have an effect on species distributions. The 1900 distribution and potential future distribution of diadromous fish in Europe, North Africa, and the Middle East were explored using generalized additive models (GAMs) and selected habitat characteristics of 196 basins. Robust presence-absence models were built for 20 of the 28 diadromous species in the study area using longitude, annual temperature, drainage surface area, annual precipitation, and source elevation as explanatory variables. Inspection of the relationship between each variable and species presence-absence revealed that the GAMs were generally interpretable and plausible. Given the predicted rise in annual temperature in climate models ranging between 1°C and 7°C by 2100, the fish species were classified according to those losing suitable basins, those gaining suitable basins, and those showing little or no change. It was found that the climate envelopes based on temperature and precipitation for diadromous species would, in general, be shifted farther northeastwards by 2100, and these shifting ranges were comparable with those assessed in other studies. The uncertain future of some species was highlighted, and it was concluded that conservation policy and management plans will need to be revised in the face of climate change.


Sign in / Sign up

Export Citation Format

Share Document