scholarly journals Genetic and real-world clinical data, combined with empirical validation, nominate JAK-STAT signalling as a target for Alzheimer’s Disease therapeutic development

2017 ◽  
Author(s):  
Alejo J. Nevado-Holgado ◽  
Elena Ribe ◽  
Laura Thei ◽  
Laura Furlong ◽  
Miguel Angel-Mayer ◽  
...  

AbstractAs Genome Wide Association Studies (GWAS) have grown in size, the number of genetic variants that have been nominated for an increasing number of diseases has correspondingly increased. Despite this increase in the number of associated SNPs per disease, their biological interpretation has in many cases remained elusive. To address this, we have combined GWAS results with an orthogonal source of evidence, namely real-world, routinely collected clinical data from more than 6 million patients in order to drive target nomination. First we show that when examined at a pathway level, analysis of all GWAS studies groups Alzheimer’s disease (AD) in a cluster with disorders of immunity and inflammation. Using clinical data we show that the degree of comorbidity of these diseases with AD correlates with the strength of their genetic association with molecular participants in the JAK-STAT pathway. Using four independent open-science datasets we then find evidence for altered regulation of JAK-STAT pathway genes in AD. Finally, we use both in vitro and in vivo rodent models to demonstrate that Aβ induces gene expression of key drivers of this pathway, providing experimental evidence validating these data-driven observations. These results therefore nominate JAK-STAT anomalies as a prominent aetiopathological event in AD and hence potential target for therapeutic development, and moreover demonstrate a de-novo multi-modal approach to derive information from rapidly increasing genomic datasets.One Sentence SummaryCombining evidence from genome wide association studies, real-world clinical and cohort molecular data together with experimental studies in rodent model systems nominates JAK-STAT signaling as an aetiopathological event in Alzheimer’s disease

Cells ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 425 ◽  
Author(s):  
Alejo J. Nevado-Holgado ◽  
Elena Ribe ◽  
Laura Thei ◽  
Laura Furlong ◽  
Miguel-Angel Mayer ◽  
...  

As genome-wide association studies (GWAS) have grown in size, the number of genetic variants that have been associated per disease has correspondingly increased. Despite this increase in the number of single-nucleotide polymorphisms (SNPs) identified per disease, their biological interpretation has in many cases remained elusive. To address this, we have combined GWAS results with orthogonal sources of evidence, namely the current knowledge of molecular pathways; real-world clinical data from six million patients; RNA expression across tissues from Alzheimer’s disease (AD) patients, and purpose-built rodent models for experimental validation. In more detail, first we show that when examined at a pathway level, analysis of all GWAS studies groups AD in a cluster with disorders of immunity and inflammation. Using clinical data, we show that the degree of comorbidity of these diseases with AD correlates with the strength of their genetic association with molecular participants in the Janus kinases/signal transducer and activator of transcription (JAK-STAT) pathway. Using four independent RNA expression datasets we then find evidence for the altered regulation of JAK-STAT pathway genes in AD. Finally, we use both in vitro and in vivo rodent models to demonstrate that Aβ induces gene expression of the key drivers of this pathway, providing experimental evidence to validate these data-driven observations. These results therefore nominate JAK-STAT anomalies as a prominent aetiopathological event in AD and hence a potential target for therapeutic development, and moreover demonstrate a de novo multi-modal approach to derive information from rapidly increasing genomic datasets.


2019 ◽  
Vol 20 (S23) ◽  
Author(s):  
Haohan Wang ◽  
Tianwei Yue ◽  
Jingkang Yang ◽  
Wei Wu ◽  
Eric P. Xing

Abstract Background Genome-wide Association Studies (GWAS) have contributed to unraveling associations between genetic variants in the human genome and complex traits for more than a decade. While many works have been invented as follow-ups to detect interactions between SNPs, epistasis are still yet to be modeled and discovered more thoroughly. Results In this paper, following the previous study of detecting marginal epistasis signals, and motivated by the universal approximation power of deep learning, we propose a neural network method that can potentially model arbitrary interactions between SNPs in genetic association studies as an extension to the mixed models in correcting confounding factors. Our method, namely Deep Mixed Model, consists of two components: 1) a confounding factor correction component, which is a large-kernel convolution neural network that focuses on calibrating the residual phenotypes by removing factors such as population stratification, and 2) a fixed-effect estimation component, which mainly consists of an Long-short Term Memory (LSTM) model that estimates the association effect size of SNPs with the residual phenotype. Conclusions After validating the performance of our method using simulation experiments, we further apply it to Alzheimer’s disease data sets. Our results help gain some explorative understandings of the genetic architecture of Alzheimer’s disease.


2020 ◽  
Author(s):  
Janet C. Harwood ◽  
Ganna Leonenko ◽  
Rebecca Sims ◽  
Valentina Escott-Price ◽  
Julie Williams ◽  
...  

AbstractMore than 50 genetic loci have been identified as being associated with Alzheimer’s disease (AD) from genome-wide association studies (GWAS) and many of these are involved in immune pathways and lipid metabolism. Therefore, we performed a transcriptome-wide association study (TWAS) of immune-relevant cells, to study the mis-regulation of genes implicated in AD. We used expression and genetic data from naive and induced CD14+ monocytes and two GWAS of AD to study genetically controlled gene expression in monocytes at different stages of differentiation and compared the results with those from TWAS of brain and blood. We identified nine genes with statistically independent TWAS signals, seven are known AD risk genes from GWAS: BIN1, PTK2B, SPI1, MS4A4A, MS4A6E, APOE and PVR and two, LACTB2 and PLIN2/ADRP, are novel candidate genes for AD. Three genes, SPI1, PLIN2 and LACTB2, are TWAS significant specifically in monocytes. LACTB2 is a mitochondrial endoribonuclease and PLIN2/ADRP associates with intracellular neutral lipid storage droplets (LSDs) which have been shown to play a role in the regulation of the immune response. Notably, LACTB2 and PLIN2 were not detected from GWAS alone.


Sign in / Sign up

Export Citation Format

Share Document