scholarly journals Global transcriptome analysis of Aedes aegypti mosquitoes in response to Zika virus infection

2017 ◽  
Author(s):  
Kayvan Etebari ◽  
Shivanand Hegde ◽  
Miguel A Saldaña ◽  
Steven G Widen ◽  
Thomas G Wood ◽  
...  

AbstractZika virus (ZIKV) of the Flaviviridae family is a recently emerged mosquito-borne virus that has been implicated in the surge of the number of microcephaly instances in South America. The recent rapid spread of the virus led to its declaration as a global health emergency by the World Health Organization. The virus is transmitted mainly by the mosquito Aedes aegypti that also vectors dengue virus, however little is known about the interactions of the virus with the mosquito vector. In this study, we investigated the transcriptome profiles of whole Ae. aegypti mosquitoes in response to ZIKV infection at 2, 7, and 14 days post-infection using RNA-Seq. Results showed changes in the abundance of a large number of transcripts at each time point following infection, with 18 transcripts commonly changed among the three time points. Gene ontology analysis revealed that most of the altered genes are involved in metabolic process, cellular process and proteolysis. In addition, 486 long intergenic non-coding RNAs were identified that were altered upon ZIKV infection. Further, we found correlational changes of a number of potential mRNA target genes with that of altered host microRNAs. The outcomes provide a basic understanding of Ae. aegypti responses to ZIKV and helps to determine host factors involved in replication or mosquito host anti-viral response against the virus.ImportanceVector-borne viruses pose great risks on human health. Zika virus has recently emerged as a global threat, rapidly expanding its distribution. Understanding the interactions of the virus with mosquito vectors at the molecular level is vital for devising new approaches in inhibiting virus transmission. In this study, we embarked on analyzing the transcriptional response of Aedes aegypti mosquitoes to Zika virus infection. Results showed large changes both in coding and long non-coding RNAs. Analysis of these genes showed similarities with other flaviviruses, including dengue virus, which is transmitted by the same mosquito vector. The outcomes provide a global picture of changes in the mosquito vector in response to Zika virus infection.

mSphere ◽  
2017 ◽  
Vol 2 (6) ◽  
Author(s):  
Kayvan Etebari ◽  
Shivanand Hegde ◽  
Miguel A. Saldaña ◽  
Steven G. Widen ◽  
Thomas G. Wood ◽  
...  

ABSTRACT Vector-borne viruses pose great risks to human health. Zika virus has recently emerged as a global threat, rapidly expanding its distribution. Understanding the interactions of the virus with mosquito vectors at the molecular level is vital for devising new approaches in inhibiting virus transmission. In this study, we embarked on analyzing the transcriptional response of Aedes aegypti mosquitoes to Zika virus infection. Results showed large changes in both coding and long noncoding RNAs. Analysis of these genes showed similarities with other flaviviruses, including dengue virus, which is transmitted by the same mosquito vector. The outcomes provide a global picture of changes in the mosquito vector in response to Zika virus infection. Zika virus (ZIKV) of the Flaviviridae family is a recently emerged mosquito-borne virus that has been implicated in the surge of the number of microcephaly instances in South America. The recent rapid spread of the virus led to its declaration as a global health emergency by the World Health Organization. The virus is transmitted mainly by the mosquito Aedes aegypti, which is also the vector of dengue virus; however, little is known about the interactions of the virus with the mosquito vector. In this study, we investigated the transcriptome profiles of whole A. aegypti mosquitoes in response to ZIKV infection at 2, 7, and 14 days postinfection using transcriptome sequencing. Results showed changes in the abundance of a large number of transcripts at each time point following infection, with 18 transcripts commonly changed among the three time points. Gene ontology analysis revealed that most of the altered genes are involved in metabolic processes, cellular processes, and proteolysis. In addition, 486 long intergenic noncoding RNAs that were altered upon ZIKV infection were identified. Further, we found changes of a number of potential mRNA target genes correlating with those of altered host microRNAs. The outcomes provide a basic understanding of A. aegypti responses to ZIKV and help to determine host factors involved in replication or mosquito host antiviral response against the virus. IMPORTANCE Vector-borne viruses pose great risks to human health. Zika virus has recently emerged as a global threat, rapidly expanding its distribution. Understanding the interactions of the virus with mosquito vectors at the molecular level is vital for devising new approaches in inhibiting virus transmission. In this study, we embarked on analyzing the transcriptional response of Aedes aegypti mosquitoes to Zika virus infection. Results showed large changes in both coding and long noncoding RNAs. Analysis of these genes showed similarities with other flaviviruses, including dengue virus, which is transmitted by the same mosquito vector. The outcomes provide a global picture of changes in the mosquito vector in response to Zika virus infection.


Author(s):  
Maria Filomena Xavier Mendes ◽  
Romeu Carillo Junior ◽  
Domingos José Vaz Cabo ◽  
Maria Solange Gosik ◽  
Renata Rodrigues Garcia Lino ◽  
...  

Background The Zika virus (ZIKV) is a flavivirus and the human disease caused by this virus has been described in the Americas in 2015. ZIKV has been identified as an etiological agent of acute exanthematous disease in Brazil. In the same year, an epidemic of microcephaly with images suggestive of congenital infection raised the suspicion of a relationship between these alterations and ZIKV infection. Epidemiological and histopathological studies point to a strong relationship between prenatal Zika virus infection and microcephaly. Newborns with microcephaly, may also present auditory and visual changes, seizures and severe neurodevelopmental impairment. In 2016, the World Health Organization (WHO) declared Zika virus (ZIKV) infection a public health emergency of international concern. Aims Clinical observation in the ambulatory school of ABRAH (Brazilian Association of Recycling and Homeopathy Assistance) of patients with encephalopathy of various origins, using the medicine Helleborus niger as equalizer of the NS (Nervous System), as described in the Complex Systems of Carillo, shows improvement in motor, cognitive and seizure disorders. Based on this observation, we propose to use this method in patients with ZIKV congenital infection. Methodology To evaluate 15 patients in follow-up at the AFR (Fluminense Rehabilitation Association), through homeopathic anamnesis, clinical, diathesic, biotypological and temperamental classification. The Gross Motor Function Classification System (GMFCS) will be used. All patients will receive Helleborus niger 6 Ch daily for 6 months. Results and discussion This study was forwarded to the research ethics committee and will begin in July 2019. Will be evaluated the use of Helleborus niger in patients with congenital infection by ZIKV, as equalizer of NS. The expected result is overall neurological improvement. Conclusion Helleborus niger, probably stimulating self-regulation through uninjured neurological pathways, will promote autopoiesis and construction of new programs of action, and will enable the improvement of patients with congenital ZIKV infection.


2016 ◽  
Vol 21 (2) ◽  
Author(s):  
Essi Marjana Korhonen ◽  
Eili Huhtamo ◽  
Teemu Smura ◽  
Hannimari Kallio-Kokko ◽  
Markku Raassina ◽  
...  

We report a Zika virus (ZIKV) infection in a patient with fever and rash after returning to Finland from Maldives, June 2015. The patient had dengue virus (DENV) IgG and IgM antibodies but pan-flavivirus RT-PCR and subsequent sequencing showed presence of ZIKV RNA in urine. Recent association of ZIKV with microcephaly highlights the need for laboratory differentiation of ZIKV from DENV infection and the circulation of ZIKV in areas outside its currently known distribution range.


2018 ◽  
Vol 147 (1) ◽  
pp. 88 ◽  
Author(s):  
DevendraT Mourya ◽  
MangeshD Gokhale ◽  
TriparnaD Majumdar ◽  
PragyaD Yadav ◽  
Vimal Kumar ◽  
...  

2017 ◽  
Vol 65 (11) ◽  
pp. 1829-1836 ◽  
Author(s):  
Wen-Yang Tsai ◽  
Han Ha Youn ◽  
Carlos Brites ◽  
Jih-Jin Tsai ◽  
Jasmine Tyson ◽  
...  

2020 ◽  
Vol 14 (3) ◽  
pp. e0008163 ◽  
Author(s):  
Basile Kamgang ◽  
Marie Vazeille ◽  
Armel Tedjou ◽  
Aurélie P. Yougang ◽  
Theodel A. Wilson-Bahun ◽  
...  

2018 ◽  
Vol 12 (1) ◽  
pp. e0006154 ◽  
Author(s):  
Dominic Paquin-Proulx ◽  
Vivian I. Avelino-Silva ◽  
Bianca A. N. Santos ◽  
Nathália Silveira Barsotti ◽  
Fabiana Siroma ◽  
...  

2019 ◽  
Author(s):  
Kelsey E. Lesteberg ◽  
Dana S. Fader ◽  
J. David Beckham

AbstractRecent outbreaks of Zika virus (ZIKV) have been associated with birth defects, including microcephaly and neurological impairment. However, the mechanisms which confer increased susceptibility to ZIKV during pregnancy remain unclear. We hypothesized that poor outcomes from ZIKV infection during pregnancy are due in part to pregnancy-induced alteration of innate immune cell frequencies and cytokine expression. To examine the impact of pregnancy on innate immune responses, we inoculated pregnant and non-pregnant female C57BL/6 mice with 5×105 FFU of ZIKV intravaginally. Innate immune cell frequencies and cytokine expression were measured by flow cytometry at day 3 post infection. Compared to non-pregnant mice, pregnant mice exhibited higher frequencies of uterine macrophages (CD68+) and tolerogenic dendritic cells (CD11c+ CD103+ and CD11c+ CD11b+). Additionally, ZIKV-infected pregnant mice had lower frequencies of CD45+ IL-12+ and CD11b+ IL-12+ cells in the uterus and spleen. These data show that pregnancy results in an altered innate immune response to ZIKV infection in the genital tract of mice and that pregnancy-associated immune modulation may play an important role in the severity of acute ZIKV infection.ImportancePregnant females longer duration that viremia following infection with Zika virus but the mechanism of this is not established. Innate immune cellular responses are important for controlling virus infection and are important for development and maintenance of pregnancy. Thus, the acute immune response to Zika virus during pregnancy may be altered so that the pregnancy can be maintained. To examine this interaction, we utilized a mouse model of Zika virus infection during pregnancy using intravaginal inoculation. We found that following Zika virus infection, pregnant mice exhibited increased expression of tolerant or non-inflammatory dendritic cells. Additionally, we found that pregnant mice have significantly depressed ability to secrete the cytokine IL-12 from innate immune cells in the uterus and the spleen while maintaining MHCII expression. These findings show that pregnancy-induced changes in the innate immune cells are biased towards tolerance and can result in decreased antigen-dependent stimulation of immune responses.


Sign in / Sign up

Export Citation Format

Share Document