scholarly journals Crossmodal congruency effect scores decrease with repeat test exposure

2017 ◽  
Author(s):  
Satinder Gill ◽  
Daniel Blustein ◽  
Adam Wilson ◽  
Jon Sensinger

AbstractThe incorporation of feedback into a person’s body schema is well established. The crossmodal congruency effect (CCE) task is used to objectively quantify incorporation without being susceptible to experimenter biases. This visual-tactile interference task is used to calculate the CCE score as a difference in response time for incongruent and congruent trials. Here we show that this metric is susceptible to a learning effect that causes attenuation of the CCE score due to repeated task exposure sessions. We demonstrate that this learning effect is persistent, even after a 6 month hiatus in testing. Two mitigation strategies are proposed: 1. Only use CCE scores that are taken after learning has stabilized, or 2. Use a modified CCE protocol that decreases the task exposure time. We show that the modified and shortened CCE protocol, which may be required to meet time or logistical constraints in laboratory or clinical settings, reduced the impact of the learning effect on CCE results. Importantly, the CCE scores from the modified protocol were not significantly more variable than results obtained with the original protocol. This study highlights the importance of considering exposure time to the CCE task when designing experiments and suggests two mitigation strategies to improve the utility of this psychophysical assessment.

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6976 ◽  
Author(s):  
Daniel Blustein ◽  
Satinder Gill ◽  
Adam Wilson ◽  
Jon Sensinger

The incorporation of feedback into a person’s body schema is well established. The crossmodal congruency task (CCT) is used to objectively quantify incorporation without being susceptible to experimenter biases. This visual-tactile interference task is used to calculate the crossmodal congruency effect (CCE) score as a difference in response time between incongruent and congruent trials. Here we show that this metric is susceptible to a learning effect that causes attenuation of the CCE score due to repeated task exposure sessions. We demonstrate that this learning effect is persistent, even after a 6 month hiatus in testing. Two mitigation strategies are proposed: 1. Only use CCE scores that are taken after learning has stabilized, or 2. Use a modified CCT protocol that decreases the task exposure time. We show that the modified and shortened CCT protocol, which may be required to meet time or logistical constraints in laboratory or clinical settings, reduced the impact of the learning effect on CCT results. Importantly, the CCE scores from the modified protocol were not significantly more variable than results obtained with the original protocol. This study highlights the importance of considering exposure time to the CCT when designing experiments and suggests two mitigation strategies to improve the utility of this psychophysical assessment.


2013 ◽  
Vol 26 (1-2) ◽  
pp. 146-147
Author(s):  
Pasquale Cardellicchio ◽  
Federica Iezzi ◽  
Marcello Costantini ◽  
Francesca Ferri ◽  
Ettore Ambrosini

Author(s):  
Sergei Soldatenko ◽  
Sergei Soldatenko ◽  
Genrikh Alekseev ◽  
Genrikh Alekseev ◽  
Alexander Danilov ◽  
...  

Every aspect of human operations faces a wide range of risks, some of which can cause serious consequences. By the start of 21st century, mankind has recognized a new class of risks posed by climate change. It is obvious, that the global climate is changing, and will continue to change, in ways that affect the planning and day to day operations of businesses, government agencies and other organizations and institutions. The manifestations of climate change include but not limited to rising sea levels, increasing temperature, flooding, melting polar sea ice, adverse weather events (e.g. heatwaves, drought, and storms) and a rise in related problems (e.g. health and environmental). Assessing and managing climate risks represent one of the most challenging issues of today and for the future. The purpose of the risk modeling system discussed in this paper is to provide a framework and methodology to quantify risks caused by climate change, to facilitate estimates of the impact of climate change on various spheres of human activities and to compare eventual adaptation and risk mitigation strategies. The system integrates both physical climate system and economic models together with knowledge-based subsystem, which can help support proactive risk management. System structure and its main components are considered. Special attention is paid to climate risk assessment, management and hedging in the Arctic coastal areas.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1534
Author(s):  
Chandra Mohan Singh ◽  
Poornima Singh ◽  
Chandrakant Tiwari ◽  
Shalini Purwar ◽  
Mukul Kumar ◽  
...  

Drought stress is considered a severe threat to crop production. It adversely affects the morpho-physiological, biochemical and molecular functions of the plants, especially in short duration crops like mungbean. In the past few decades, significant progress has been made towards enhancing climate resilience in legumes through classical and next-generation breeding coupled with omics approaches. Various defence mechanisms have been reported as key players in crop adaptation to drought stress. Many researchers have identified potential donors, QTLs/genes and candidate genes associated to drought tolerance-related traits. However, cloning and exploitation of these loci/gene(s) in breeding programmes are still limited. To bridge the gap between theoretical research and practical breeding, we need to reveal the omics-assisted genetic variations associated with drought tolerance in mungbean to tackle this stress. Furthermore, the use of wild relatives in breeding programmes for drought tolerance is also limited and needs to be focused. Even after six years of decoding the whole genome sequence of mungbean, the genome-wide characterization and expression of various gene families and transcriptional factors are still lacking. Due to the complex nature of drought tolerance, it also requires integrating high throughput multi-omics approaches to increase breeding efficiency and genomic selection for rapid genetic gains to develop drought-tolerant mungbean cultivars. This review highlights the impact of drought stress on mungbean and mitigation strategies for breeding high-yielding drought-tolerant mungbean varieties through classical and modern omics technologies.


Sign in / Sign up

Export Citation Format

Share Document