transparent barrier
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 13)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Vol 2 ◽  
Author(s):  
Daisuke Mine ◽  
Sakurako Kimoto ◽  
Kazuhiko Yokosawa

Distance perception in humans can be affected by oculomotor and optical cues and a person’s action capability in a given environment, known as action-specific effects. For example, a previous study has demonstrated that egocentric distance estimation to a target is affected by the width of a transparent barrier placed in the intermediate space between a participant and a target. However, the characteristics of a barrier’s width that affect distance perception remain unknown. Therefore, we investigated whether visual and tactile inputs and actions related to a barrier affect distance estimation to a target behind the barrier. The results confirmed previous studies by demonstrating that visual and tactile presentations of the barrier’s width affected distance estimation to the target. However, this effect of the barrier’s width was not observed when the barrier was touchable but invisible nor when the barrier was visible but penetrable. These findings indicate the complexity of action-specific effects and the difficulty of identifying necessary information for inducing these effects.


2021 ◽  
Vol 11 (19) ◽  
pp. 9185
Author(s):  
Romana Antczak-Jarząbska ◽  
Krzysztof Pawłowski ◽  
Maciej Niedostatkiewicz

The article is focused on the airflow in a ventilation system in a building. The work examines the methods which enhance the chimney effect. In this paper, three cases with different chimneys were analyzed for the full-scale experiment. These cases were characterized by different geometrical and material parameters, leading to differences in the intensity of the ventilation airflow. The common denominator of the cases was the room with the air inlet and outlet to the ventilation system. The differences between the experimental cases concerned the chimney canal itself, and more precisely its part protruding above the roof slope. The first experimental case concerned a ventilation canal made in a traditional way, from solid ceramic brick. The second experimental case concerned the part that led out above the roof slope with a transparent barrier, called a solar chimney. In the third experimental case, a rotary type of chimney cap was installed on the chimney to improve the efficiency of stack ventilation. All these cases were used to determine the performance of natural ventilation—Air Change per Hour (CH). Additionally, the paper presents a technical and economic comparison of the solutions used.


2021 ◽  
pp. 1-17
Author(s):  
Grant T. Fairchild ◽  
Francesco Marini ◽  
Jacqueline C. Snow

Abstract The cognitive and neural bases of visual perception are typically studied using pictures rather than real-world stimuli. Unlike pictures, real objects are actionable solids that can be manipulated with the hands. Recent evidence from human brain imaging suggests that neural responses to real objects differ from responses to pictures; however, little is known about the neural mechanisms that drive these differences. Here, we tested whether brain responses to real objects versus pictures are differentially modulated by the “in-the-moment” graspability of the stimulus. In human dorsal cortex, electroencephalography responses show a “real object advantage” in the strength and duration of mu (μ) and low beta (β) rhythm desynchronization—well-known neural signatures of visuomotor action planning. We compared desynchronization for real tools versus closely matched pictures of the same objects, when the stimuli were positioned unoccluded versus behind a large transparent barrier that prevented immediate access to the stimuli. We found that, without the barrier in place, real objects elicited stronger μ and β desynchronization compared to pictures, both during stimulus presentation and after stimulus offset, replicating previous findings. Critically, however, with the barrier in place, this real object advantage was attenuated during the period of stimulus presentation, whereas the amplification in later periods remained. These results suggest that the “real object advantage” is driven initially by immediate actionability, whereas later differences perhaps reflect other, more inherent properties of real objects. The findings showcase how the use of richer multidimensional stimuli can provide a more complete and ecologically valid understanding of object vision.


2021 ◽  
Author(s):  
Jacob Bartels ◽  
Cheryl Fairfield Estill ◽  
I-Chen Chen ◽  
Dylan Neu

Transparent barriers were installed as a response to the SARS-COV-2 pandemic in many customer-facing industries. Transparent barriers are an engineering control that are utilized to intercept air traveling between customers to workers. Information on the effectiveness of these barriers against aerosols is limited. In this study, a cough simulator was used to represent a cough from a customer. Two optical particle counters were used (one on each side of the barrier, labeled reference and worker) to determine the number of particles that migrated around a transparent barrier. Nine barrier sizes and a no barrier configuration were tested with six replicates each. Tests of these 10 configurations were conducted for both sitting and standing scenarios to represent configurations common to nail salons and grocery stores, respectively. Barrier efficiency was calculated using a ratio of the particle count results (reference/worker). Barriers had better efficiency when they were 9 to 39 cm (3.5 to 15.5 inches) above cough height and at least 91 cm (36 inches) wide, 92% and 93% respectively. Barriers that were 91 cm (36 inches) above table height for both scenarios blocked 71% or more of the particles between 0.35–0.725 µm and 68% for particles between 1 to 3 µm. A barrier that blocked an initial cough was effective at reducing particle counts. While the width of barriers was not as significant as height in determining barrier efficiency it was important that a barrier be placed where interactions between customers and workers are most frequent.


2021 ◽  
Author(s):  
Zegni Triki ◽  
Stephanie Fong ◽  
Mirjam Amcoff ◽  
Niclas Kolm

The telencephalon is a brain region believed to have played an essential role during cognitive evolution in vertebrates. However, till now, all the evidence on the evolutionary association between telencephalon size and cognition stem from comparative studies. To experimentally investigate the potential evolutionary association between cognitive abilities and telencephalon size, we used male guppies artificially selected for large and small telencephalon relative to the rest of the brain. In a detour task, we tested a functionally important aspect of executive cognitive ability; inhibitory control abilities. We found that males with larger telencephalon outperformed males with smaller telencephalon. They showed faster improvement in performance during detour training and were more successful in reaching the food reward without touching the transparent barrier. Together, our findings provide the first experimental evidence showing that evolutionary enlargements of relative telencephalon size confer cognitive benefits, supporting an important role for mosaic brain evolution during cognitive evolution.


2020 ◽  
Vol 238 (12) ◽  
pp. 2857-2864
Author(s):  
D. Quarona ◽  
M. Raffuzzi ◽  
M. Costantini ◽  
C. Sinigaglia

Abstract Action and vision are known to be tightly coupled with each other. In a previous study, we found that repeatedly grasping an object without any visual feedback might result in a perceptual aftereffect when the object was visually presented in the context of a perceptual judgement task. In this study, we explored whether and how such an effect could be modulated by presenting the object behind a transparent barrier. Our conjecture was that if perceptual judgment relies, in part at least, on the same processes and representations as those involved in action, then one should expect to find a slowdown in judgment performance when the target object looks to be out of reach. And this was what we actually found. This indicates that not only acting upon an object but also being prevented from acting upon it can affect how the object is perceptually judged.


2019 ◽  
Vol 23 (1) ◽  
pp. 215-225 ◽  
Author(s):  
Jayden O. van Horik ◽  
Christine E. Beardsworth ◽  
Philippa R. Laker ◽  
Mark A. Whiteside ◽  
Joah R. Madden

AbstractThe ability to inhibit prepotent actions towards rewards that are made inaccessible by transparent barriers has been considered to reflect capacities for inhibitory control (IC). Typically, subjects initially reach directly, and incorrectly, for the reward. With experience, subjects may inhibit this action and instead detour around barriers to access the reward. However, assays of IC are often measured across multiple trials, with the location of the reward remaining constant. Consequently, other cognitive processes, such as response learning (acquisition of a motor routine), may confound accurate assays of IC. We measured baseline IC capacities in pheasant chicks, Phasianus colchicus, using a transparent cylinder task. Birds were then divided into two training treatments, where they learned to access a reward placed behind a transparent barrier, but experienced differential reinforcement of a particular motor response. In the stationary-barrier treatment, the location of the barrier remained constant across trials. We, therefore, reinforced a fixed motor response, such as always go left, which birds could learn to aid their performance. Conversely, we alternated the location of the barrier across trials for birds in the moving-barrier treatment and hence provided less reinforcement of their response learning. All birds then experienced a second presentation of the transparent cylinder task to assess whether differences in the training treatments influenced their subsequent capacities for IC. Birds in the stationary-barrier treatment showed a greater improvement in their subsequent IC performance after training compared to birds in the moving-barrier treatment. We, therefore, suggest that response learning aids IC performance on detour tasks. Consequently, non-target cognitive processes associated with different neural substrates appear to underlie performances on detour tasks, which may confound accurate assays of IC. Our findings question the construct validity of a commonly used paradigm that is widely considered to assess capacities for IC in humans and other animals.


2019 ◽  
Author(s):  
Jayden O. van Horik ◽  
Christine E. Beardsworth ◽  
Philippa R. Laker ◽  
Mark A. Whiteside ◽  
Joah R. Madden

ABSTRACTThe ability to inhibit prepotent actions towards rewards that are made inaccessible by transparent barriers has been considered to reflect capacities for inhibitory control (IC). Typically, subjects initially reach directly, and incorrectly, for the reward. With experience, subjects may inhibit this action and instead detour around barriers to access the reward. However, assays of IC are often measured across multiple trials, with the location of the reward remaining constant. Consequently, other cognitive processes, such as response learning (acquisition of a motor routine), may confound accurate assays of IC. We measured baseline IC capacities in pheasant chicks, Phasianus colchicus, using a transparent cylinder task. Birds were then divided into two training treatments, where they learned to access a reward placed behind a transparent barrier, but experienced differential reinforcement of a particular motor response. In the Stationary-Barrier treatment, the location of the barrier remained constant across trials. We therefore reinforced a fixed motor response, such as always go left, which birds could learn to aid their performance. Conversely, we alternated the location of the barrier across trials for birds in the Moving-Barrier treatment, and hence provided less reinforcement of their response learning. All birds then experienced a second presentation of the transparent cylinder task to assess whether differences in the training treatments influenced their subsequent capacities for IC. Birds in the Stationary-Barrier treatment showed a greater improvement in their subsequent IC performance after training compared to birds in the Moving-Barrier treatment. We therefore suggest that response learning aids IC performance on detour tasks. Consequently, non-target cognitive processes associated with different neural substrates appear to underlie performances on detour tasks, which may confound accurate assays of IC. Our findings question the construct validity of a commonly used paradigm that is widely considered to assess capacities for IC in humans and other animals.


2019 ◽  
Vol 74 (2) ◽  
pp. 223-232 ◽  
Author(s):  
Martha Z. Vardaki ◽  
Dana V. Devine ◽  
Katherine Serrano ◽  
Nikolaos Simantiris ◽  
Michael W. Blades ◽  
...  

In this study, we show how defocused spatially offset Raman spectroscopy (SORS) can be employed to recover chemical information from media of biomedical significance within sealed plastic transfusion and culture bags using a commercial SORS instrument. We demonstrate a simple approach to recover subsurface spectral information through a transparent barrier by optimizing the spatial offset of the defocused beam. The efficiency of the measurements is assessed in terms of the SORS ratio and signal-to-noise ratio (S/N) through a simple manual approach and an ordinary least squares model. By comparing the results for three different biological samples (red blood cell concentrate, pooled red cell supernatant and a suspension of Jurkat cells), we show that there is an optimum value of the offset parameter which yields the maximum S/N depending on the barrier material and optical properties of the ensemble contents. The approach was developed in the context of biomedical applications but is generally applicable to any three-layer system consisting of turbid content between transparent thin plastic barriers (i.e., front and back bag surfaces), particularly where the analyte of interest is dilute or not a strong scatterer.


Sign in / Sign up

Export Citation Format

Share Document