scholarly journals A Genome-Wide Association Study of the Frailty Index Highlights Synaptic Pathways in Aging

Author(s):  
Janice L Atkins ◽  
Juulia Jylhävä ◽  
Nancy L Pedersen ◽  
Patrik K Magnusson ◽  
Yi Lu ◽  
...  

ABSTRACTFrailty is a common geriatric syndrome, strongly associated with disability, mortality and hospitalisation. The mechanisms underlying frailty are multifactorial and not well understood, but a genetic basis has been suggested with heritability estimates between 19 and 45%. Understanding the genetic determinants and biological mechanisms underpinning frailty may help to delay or even prevent frailty. We performed a genome-wide association study (GWAS) of a frailty index (FI) in European descent participants from UK Biobank (n=164,610, aged 60-70 years). FI calculation was based on 49 self-reported items on symptoms, disabilities and diagnosed diseases. We identified 26 independent genetic signals at 24 loci associated with the FI (p<5*10−8). Many of these loci have previously been associated with traits such as body mass index, cardiovascular disease, smoking, HLA proteins, depression and neuroticism; however, three appear to be novel. The estimated single nucleotide polymorphism (SNP) heritability of the FI was 14% (0.14, SE 0.006). A genetic risk score for the FI, derived solely from the UK Biobank data, was significantly associated with FI in the Swedish TwinGene study (n=10,616, beta: 0.11, 95% CI: 0.02-0.20, p=0.015). In pathway analysis, genes associated with synapse function were significantly enriched (p<3*10−6). We also used Mendelian randomization to identify modifiable traits and exposures that may affect the risk of frailty, with a higher educational attainment genetic risk score being associated with a lower risk of frailty. Risk of frailty is influenced by many genetic factors, including well-known disease risk factors and mental health, with particular emphasis on synapse maintenance pathways.

2009 ◽  
Vol 8 (1) ◽  
pp. 57-66 ◽  
Author(s):  
Simon Mead ◽  
Mark Poulter ◽  
James Uphill ◽  
John Beck ◽  
Jerome Whitfield ◽  
...  

2017 ◽  
Author(s):  
Toni-Kim Clarke ◽  
Mark J. Adams ◽  
Gail Davies ◽  
David M. Howard ◽  
Lynsey S. Hall ◽  
...  

AbstractAlcohol consumption has been linked to over 200 diseases and is responsible for over 5% of the global disease burden. Well known genetic variants in alcohol metabolizing genes, e.g. ALDH2, ADH1B, are strongly associated with alcohol consumption but have limited impact in European populations where they are found at low frequency. We performed a genome-wide association study (GWAS) of self-reported alcohol consumption in 112,117 individuals in the UK Biobank (UKB) sample of white British individuals. We report significant genome-wide associations at 8 independent loci. These include SNPs in alcohol metabolizing genes (ADH1B/ADH1C/ADH5) and 2 loci in KLB, a gene recently associated with alcohol consumption. We also identify SNPs at novel loci including GCKR, PXDN, CADM2 and TNFRSF11A. Gene-based analyses found significant associations with genes implicated in the neurobiology of substance use (CRHR1, DRD2), and genes previously associated with alcohol consumption (AUTS2). GCTA-GREML analyses found a significant SNP-based heritability of self-reported alcohol consumption of 13% (S.E.=0.01). Sex-specific analyses found largely overlapping GWAS loci and the genetic correlation between male and female alcohol consumption was 0.73 (S.E.=0.09, p-value = 1.37 x 10−16). Using LD score regression, genetic overlap was found between alcohol consumption and schizophrenia (rG=0.13, S.E=0.04), HDL cholesterol (rG=0.21, S.E=0.05), smoking (rG=0.49, S.E=0.06) and various anthropometric traits (e.g. Overweight, rG=-0.19, S.E.=0.05). This study replicates the association between alcohol consumption and alcohol metabolizing genes and KLB, and identifies 4 novel gene associations that should be the focus of future studies investigating the neurobiology of alcohol consumption.


2020 ◽  
Vol 29 (8) ◽  
pp. 1396-1404 ◽  
Author(s):  
Weihua Meng ◽  
Brian W Chan ◽  
Cameron Harris ◽  
Maxim B Freidin ◽  
Harry L Hebert ◽  
...  

Abstract Background Common types of musculoskeletal conditions include pain in the neck and shoulder areas. This study seeks to identify the genetic variants associated with neck or shoulder pain based on a genome-wide association approach using 203 309 subjects from the UK Biobank cohort and look for replication evidence from the Generation Scotland: Scottish Family Health Study (GS:SFHS) and TwinsUK. Methods A genome-wide association study was performed adjusting for age, sex, BMI and nine population principal components. Significant and independent genetic variants were then sent to GS:SFHS and TwinsUK for replication. Results We identified three genetic loci that were associated with neck or shoulder pain in the UK Biobank samples. The most significant locus was in an intergenic region in chromosome 17, rs12453010, having P = 1.66 × 10−11. The second most significant locus was located in the FOXP2 gene in chromosome 7 with P = 2.38 × 10−10 for rs34291892. The third locus was located in the LINC01572 gene in chromosome 16 with P = 4.50 × 10−8 for rs62053992. In the replication stage, among four significant and independent genetic variants, rs2049604 in the FOXP2 gene and rs62053992 in the LINC01572 gene were weakly replicated in GS:SFHS (P = 0.0240 and P = 0.0202, respectively). Conclusions We have identified three loci associated with neck or shoulder pain in the UK Biobank cohort, two of which were weakly supported in a replication cohort. Further evidence is needed to confirm their roles in neck or shoulder pain.


Sign in / Sign up

Export Citation Format

Share Document