scholarly journals Modulation of high frequency by low-frequency Oscillations in the basal ganglia

2017 ◽  
Author(s):  
D. Nouri ◽  
R. Ebrahimpour ◽  
A. Mirzaei

AbstractModulation of beta band fioscillatory activity (15-30 Hz) by delta band oscillatory activity (1-3 Hz) in the cortico-basal ganglia loop is important for normal basal ganglia functions. However, the neural mechanisms underlying this modulation are poorly understood. To understand the mechanisms underlying such frequency modulations in the basal ganglia, we use large scale subthalamo-pallidal network model stimulated via a delta-frequency input signal. We show that inhibition of external Globus Pallidus (GPe) and excitation of the Subthalamic nucleus (STN) using the delta-band stimulation leads to the same delta-beta interactions in the network model as the experimental results observed in healthy basal ganglia. In addition, we show that pathological beta oscillations in the network model decorrelates the delta-beta link in the network model. In general, using our simulation results, we propose that striato-pallidal inhibition and cortico-subthalamic excitation are the potential sources of the delta-beta link observed in the intact basal ganglia.

Author(s):  
Jose A. GONZALEZ-ESCRIVA ◽  
Josep R. MEDINA ◽  
Joaquin M. GARRIDO

ARJ-R caissons are based on the "long-circuit" concept (Medina et al, 2016) that allows the extension of the destructive wave interference mechanism to mitigate low frequency oscillations without enlarging the width of the caisson. The performance of the ARJ-R caissons is referred to its reflection coefficient (Cr) which was obtained through large-scale physical model tests (Gonzalez-Escriva et al, 2018). In this paper, the effectiveness of Anti-Reflective Jarlan-type structures for Port Resonance mitigation (ARJ-R) has been assessed numerically for the port of Denia (Spain). ARJ-R structures are constructible, with similar dimensions as conventional vertical quay caissons and with a similar cost (15percent more than conventional vertical caisson).Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/LomQEVpvjik


2019 ◽  
Vol 23 (5) ◽  
pp. 2379-2400 ◽  
Author(s):  
Juan Camilo Restrepo ◽  
Aldemar Higgins ◽  
Jaime Escobar ◽  
Silvio Ospino ◽  
Natalia Hoyos

Abstract. This study evaluated the influence of low-frequency oscillations, that are linked to large-scale oceanographic–atmospheric processes, on streamflow variability in small tropical coastal mountain rivers of the Sierra Nevada de Santa Marta, Colombia. We used data from six rivers that had > 32 years of complete, continuous monthly streamflow records. This investigation employed spectral analyses to (1) explore temporal characteristics of streamflow variability, (2) estimate the net contribution to the energy spectrum of low-frequency oscillations to streamflow anomalies, and (3) analyze the linkages between streamflow anomalies and large-scale, low-frequency oceanographic–atmospheric processes. Wavelet analyses indicate that the 8–12-year component exhibited a quasi-stationary state, with a peak of maximum power between 1985 and 2005. These oscillations were nearly in phase in all rivers. Maximum power peaks occurred for the Palomino and Rancheria rivers in 1985 and 1995, respectively. The wavelet spectrum highlights a change in river variability patterns between 1995 and 2015, characterized by a shift towards the low-frequency oscillations' domain (8–12 years). The net contribution of these oscillations to the energy spectrum was as high as 51 %, a value much larger than previously thought for rivers in northwestern South America. The simultaneous occurrence of hydrologic oscillations, as well as the increase in the amplitude of the 8–12-year band, defined periods of extremely anomalous wet seasons during 1989–1990, 1998–2002 and 2010–2011, reflecting the role of low-frequency oscillations in modulating streamflow variability in these rivers. Cross-wavelet transform and wavelet coherence revealed high common powers and significant coherences in low-frequency bands (>96 months) between streamflow anomalies and Atlantic Meridional Oscillation (AMO), Pacific Decadal Oscillation (PDO) and the Tropical North Atlantic Index (TNA). These results show the role of large-scale, low-frequency oceanographic–climate processes in modulating the long-term hydrological variability of these rivers.


Stroke ◽  
2020 ◽  
Vol 51 (5) ◽  
pp. 1442-1450 ◽  
Author(s):  
Jessica M. Cassidy ◽  
Anirudh Wodeyar ◽  
Jennifer Wu ◽  
Kiranjot Kaur ◽  
Ashley K. Masuda ◽  
...  

Background and Purpose— Low-frequency oscillations reflect brain injury but also contribute to normal behaviors. We examined hypotheses relating electroencephalography measures, including low-frequency oscillations, to injury and motor recovery poststroke. Methods— Patients with stroke completed structural neuroimaging, a resting-state electroencephalography recording and clinical testing. A subset admitted to an inpatient rehabilitation facility also underwent serial electroencephalography recordings. The relationship that electroencephalography measures (power and coherence with leads overlying ipsilesional primary motor cortex [iM1]) had with injury and motor status was assessed, focusing on delta (1–3 Hz) and high-beta (20–30 Hz) bands. Results— Across all patients (n=62), larger infarct volume was related to higher delta band power in bilateral hemispheres and to higher delta band coherence between iM1 and bilateral regions. In chronic stroke, higher delta power bilaterally correlated with better motor status. In subacute stroke, higher delta coherence between iM1 and bilateral areas correlated with poorer motor status. These coherence findings were confirmed in serial recordings from 18 patients in an inpatient rehabilitation facility. Here, interhemispheric coherence between leads overlying iM1 and contralesional M1 was elevated at inpatient rehabilitation facility admission compared with healthy controls (n=22), declining to control levels over time. Decreases in interhemispheric coherence between iM1 and contralesional M1 correlated with better motor recovery. Conclusions— Delta band coherence with iM1 related to greater injury and poorer motor status subacutely, while delta band power related to greater injury and better motor status chronically. Low-frequency oscillations reflect both injury and recovery after stroke and may be useful biomarkers in stroke recovery and rehabilitation.


2021 ◽  
Vol 118 (14) ◽  
pp. e2024121118
Author(s):  
Mickael Degoulet ◽  
Alix Tiran-Cappello ◽  
Etienne Combrisson ◽  
Christelle Baunez ◽  
Yann Pelloux

Identifying vulnerable individuals before they transition to a compulsive pattern of drug seeking and taking is a key challenge in addiction to develop efficient prevention strategies. Oscillatory activity within the subthalamic nucleus (STN) has been associated with compulsive-related disorders. To study compulsive cocaine-seeking behavior, a core component of drug addiction, we have used a rat model in which cocaine seeking despite a foot-shock contingency only emerges in some vulnerable individuals having escalated their cocaine intake. We show that abnormal oscillatory activity within the alpha/theta and low-beta bands during the escalation of cocaine intake phase predicts the subsequent emergence of compulsive-like seeking behavior. In fact, mimicking STN pathological activity in noncompulsive rats during cocaine escalation turns them into compulsive ones. We also find that 30 Hz, but not 130 Hz, STN deep brain stimulation (DBS) reduces pathological cocaine seeking in compulsive individuals. Our results identify an early electrical signature of future compulsive-like cocaine-seeking behavior and further advocates the use of frequency-dependent STN DBS for the treatment of addiction.


2006 ◽  
Vol 95 (5) ◽  
pp. 3245-3256 ◽  
Author(s):  
Michal Rivlin-Etzion ◽  
Ya'acov Ritov ◽  
Gali Heimer ◽  
Hagai Bergman ◽  
Izhar Bar-Gad

Spectral analysis of neuronal spike trains is an important tool in understanding the characteristics of neuronal activity by providing insights into normal and pathological periodic oscillatory phenomena. However, the refractory period creates high-frequency modulations in spike-train firing rate because any rise in the discharge rate causes a descent in subsequent time bins, leading to multifaceted modifications in the structure of the spectrum. Thus the power spectrum of the spiking activity (autospectrum) displays elevated energy in high frequencies relative to the lower frequencies. The spectral distortion is more dominant in neurons with high firing rates and long refractory periods and can lead to reduced identification of low-frequency oscillations (such as the 5- to 10-Hz burst oscillations typical of Parkinsonian basal ganglia and thalamus). We propose a compensation process that uses shuffling of interspike intervals (ISIs) for reliable identification of oscillations in the entire frequency range. This compensation is further improved by local shuffling, which preserves the slow changes in the discharge rate that may be lost in global shuffling. Cross-spectra of pairs of neurons are similarly distorted regardless of their correlation level. Consequently, identification of low-frequency synchronous oscillations, even for two neurons recorded by a single electrode, is improved by ISI shuffling. The ISI local shuffling is computed with confidence limits that are based on the first-order statistics of the spike trains, thus providing a reliable estimation of auto- and cross-spectra of spike trains and making it an optimal tool for physiological studies of oscillatory neuronal phenomena.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Mahdi Saadatmand ◽  
Gevork B. Gharehpetian ◽  
Ali Moghassemi ◽  
Josep M. Guerrero ◽  
Pierluigi Siano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document