scholarly journals Design of DNA Origami Diamond Photonic Crystals

2019 ◽  
Author(s):  
Sung Hun Park ◽  
Haedong Park ◽  
Kahyun Hur ◽  
Seungwoo Lee

AbstractSelf-assembled photonic crystals have proven to be a fascinating class of photonic materials for non-absorbing structural colorizations over large areas and in diverse relevant applications, including tools for on-chip spectrometers and biosensors, platforms for reflective displays, and templates for energy devices. The most prevalent building blocks for the self-assembly of photonic crystals are spherical colloids and block copolymers (BCPs) due to the generic appeal of these materials, which can be crafted into large-area 3D lattices. However, due to the intrinsic limitations of these structures, these two building blocks are difficult to assemble into a direct rod-connected diamond lattice, which is considered to be a champion photonic crystal. Here, we present a DNA origami-route for a direct rod-connected diamond photonic crystal exhibiting a complete photonic bandgap (PBG) in the visible regime. Using a combination of electromagnetic, phononic, and mechanical numerical analyses, we identify (i) the structural constraints of the 50 megadalton-scale giant DNA origami building blocks that could self-assemble into a direct rod-connected diamond lattice with high accuracy, and (ii) the elastic moduli that are essentials for maintaining lattice integrity in a buffer solution. A solution molding process could enable the transformation of the as-assembled DNA origami lattice into a porous silicon- or germanium-coated composite crystal with enhanced refractive index contrast, in that a champion relative bandwidth for the photonic bandgap (i.e., 0.29) could become possible even for a relatively low volume fraction (i.e., 16 vol%).

2006 ◽  
Vol 15 (01) ◽  
pp. 1-8 ◽  
Author(s):  
KAI SONG ◽  
RENAUD VALLEE ◽  
MARK VAN DER AUWERAER ◽  
KOEN CLAYS

The spontaneous emission of fluorophores embedded in a photonic crystal has been studied. By nano-engineering a sandwich-like photonic structure, such that fluorophore-coated photonic atoms constitute a middle layer between the photonic crystals, we have been able to precisely control the location of fluorophores in photonic crystals and exclude the presence of fluorophores at the surface of the crystal. It has been found that the stopband in the transmission spectrum is deeper than the stopband in the emission spectrum. We conjecture that the omnidirectional propagation of the emission from a point source in an incomplete photonic bandgap is the cause of the shallower stopband in emission.


2017 ◽  
Vol 26 (01) ◽  
pp. 1750007 ◽  
Author(s):  
Arafa H. Aly ◽  
Hussein A. Elsayed ◽  
Christina Malek

We have obtained the optical properties of one-dimensional defective photonic crystals containing nanocomposite materials of Ag as a defect layer in UV region; the permittivity of nanocomposite materials depends on plasmon frequency of metal nanoparticles. Our analysis is based on the fundamentals of the transfer matrix method. We have investigated the effect of many parameters such as metal thickness, volume fraction, and defected dielectric materials on the intensity of a defect layer.


2013 ◽  
Vol 441 ◽  
pp. 80-83
Author(s):  
Yong Wan ◽  
He Zhang ◽  
Wan Qin Yang ◽  
Chao Li ◽  
Ming Hui Jia

Scattering units or building blocks are the basic elements for photonic crystal lattices. Photonic bandgaps can be tuned and improved in two-dimensional (2D) triangular lattices, as well as in square lattices by introducing axial-symmetry cylinder-segments instead of cylinders as basic scattering units. Owing to the changes of bulks, reflectance effect of electromagnetic waves will be different both in TE modes and in TM modes. The widths of bandgaps for the two polarization modes can be adjusted and matched to overlap in some range.


2021 ◽  
Vol 9 ◽  
Author(s):  
Meng Yuan ◽  
Tao Xu ◽  
Zhi Hong Hang

A novel design of the Fabry–Pérot optical cavity is proposed, utilizing both the topological interface state structures and photonic bandgap materials with a controllable reflection phase. A one-to-one correspondence between the traditional Fabry–Pérot cavity and optical topological cavity is found, while the tunable reflection phase of the photonic crystal mirrors provides an extra degree of freedom on cavity mode selection. The relationship between the Zak phase and photonic bandgap provides theoretical guidance to the manipulation of the reflection phase of photonic crystals. The dispersions of interface states with different topology origins are explored. Linear interfacial dispersion emerging in photonic crystals with the valley–spin Hall effect leads to an extra n = 0 cavity mode compared to the Zak phase–induced deterministic interface states with quadratic dispersion. The frequency of the n = 0 cavity mode is not affected by the cavity length, whose quality factor can also be tuned by the thickness of the photonic crystal mirrors. With the recent help of topology photonics in the tuning reflection phase and dispersion relationship, we hope our results can provide more intriguing ideas to construct topological optical devices.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hamed Azhdari ◽  
Sahel Javahernia

Abstract Increasing the speed of operation in all optical signal processing is very important. For reaching this goal one needs high speed optical devices. Optical half adders are one of the important building blocks required in optical processing. In this paper an optical half adder was proposed by combining nonlinear photonic crystal ring resonators with optical waveguides. Finite difference time domain method wase used for simulating the final structure. The simulation results confirmed that the rise time for the proposed structure is about 1 ps.


Nanoscale ◽  
2021 ◽  
Author(s):  
Michael Penth ◽  
Kordula Schellnhuber ◽  
Roland Bennewitz ◽  
Johanna Blass

Massive parallel force spectroscopy reveals a surprisingly high flexibility for DNA constructs used in DNA origami. The high flexibility is attributed to the structural dynamics of DNA self-assemblies.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hassan Mamnoon-Sofiani ◽  
Sahel Javahernia

Abstract All optical logic gates are building blocks for all optical data processors. One way of designing optical logic gates is using threshold switching which can be realized by combining an optical resonator with nonlinear Kerr effect. In this paper we showed that a novel structure consisting of nonlinear photonic crystal ring resonator which can be used for realizing optical NAND/NOR and majority gates. The delay time of the proposed NAND/NOR and majority gates are 2.5 ps and 1.5 ps respectively. Finite difference time domain and plane wave expansion methods were used for simulating the proposed optical logic gates. The total footprint of the proposed structure is about 988 μm2.


Nanoscale ◽  
2017 ◽  
Vol 9 (35) ◽  
pp. 12969-12975 ◽  
Author(s):  
Xiang Fei ◽  
Tao Lu ◽  
Jun Ma ◽  
Shenmin Zhu ◽  
Di Zhang

Photonic crystals with both optical and thermal responses based on a natural butterfly wing template.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
David M. Smith ◽  
Verena Schüller ◽  
Carsten Forthmann ◽  
Robert Schreiber ◽  
Philip Tinnefeld ◽  
...  

Nanometer-sized polyhedral wire-frame objects hold a wide range of potential applications both as structural scaffolds as well as a basis for synthetic nanocontainers. The utilization of DNA as basic building blocks for such structures allows the exploitation of bottom-up self-assembly in order to achieve molecular programmability through the pairing of complementary bases. In this work, we report on a hollow but rigid tetrahedron framework of 75 nm strut length constructed with the DNA origami method. Flexible hinges at each of their four joints provide a means for structural variability of the object. Through the opening of gaps along the struts, four variants can be created as confirmed by both gel electrophoresis and direct imaging techniques. The intrinsic site addressability provided by this technique allows the unique targeted attachment of dye and/or linker molecules at any point on the structure's surface, which we prove through the superresolution fluorescence microscopy technique DNA PAINT.


Sign in / Sign up

Export Citation Format

Share Document