A bioinspired poly(N-isopropylacrylamide)/silver nanocomposite as a photonic crystal with both optical and thermal responses

Nanoscale ◽  
2017 ◽  
Vol 9 (35) ◽  
pp. 12969-12975 ◽  
Author(s):  
Xiang Fei ◽  
Tao Lu ◽  
Jun Ma ◽  
Shenmin Zhu ◽  
Di Zhang

Photonic crystals with both optical and thermal responses based on a natural butterfly wing template.

2008 ◽  
Vol 1133 ◽  
Author(s):  
Brian T. Cunningham ◽  
Leo Chan ◽  
Patrick C. Mathias ◽  
Nikhil Ganesh ◽  
Sherine George ◽  
...  

Abstract Photonic crystal surfaces represent a class of resonant optical structures that are capable of supporting high intensity electromagnetic standing waves with near-field and far-field properties that can be exploited for high sensitivity detection of biomolecules and cells. While modulation of the resonant wavelength of a photonic crystal by the dielectric permittivity of adsorbed biomaterials enables label-free detection, the resonance can also be tuned to coincide with the excitation wavelength of common fluorescent tags - including organic molecules and semiconductor quantum dots. Photonic crystals are also capable of efficiently channeling fluorescent emission into a preferred direction for enhanced extraction efficiency. Photonic crystals can be designed to support multiple resonant modes that can perform label free detection, enhanced fluorescence excitation, and enhanced fluorescence extraction simultaneously on the same device. Because photonic crystal surfaces may be inexpensively produced over large surface areas by nanoreplica molding processes, they can be incorporated into disposable labware for applications such as pharmaceutical high throughput screening. In this talk, the optical properties of surface photonic crystals will be reviewed and several applications will be described, including results from screening a 200,000-member chemical compound library for inhibitors of protein-DNA interactions, gene expression microarrays, and high sensitivity of protein biomarkers.


2007 ◽  
Vol 2007 ◽  
pp. 1-8
Author(s):  
Xiaoshuang Chen ◽  
Renlong Zhou ◽  
Yong Zeng ◽  
Hongbo Chen ◽  
Wei Lu

We review the simulation work for the far-field focus and dispersionless anticrossing bands in two-dimensional (2D) photonic crystals. In a two-dimensional photonic-crystal-based concave lens, the far-field focus of a plane wave is given by the distance between the focusing point and the lens. Strong and good-quality far-field focusing of a transmitted wave, explicitly following the well-known wave-beam negative refraction law, can be achieved. The spatial frequency information of the Bloch mode in multiple Brillouin zones (BZs) is investigated in order to indicate the wave propagation in two different regions. When considering the photonic transmission in a 2D photonic crystal composed of a negative phase-velocity medium (NPVM), it is shown that the dispersionless anticrossing bands are generated by the couplings among the localized surface polaritons of the NPVM rods. The photonic band structures of the NPVM photonic crystals are characterized by a topographical continuous dispersion relationship accompanied by many anticrossing bands.


2008 ◽  
Vol 40 (2) ◽  
pp. 167-173 ◽  
Author(s):  
Dj. Jovanovic ◽  
R. Gajic ◽  
K. Hingerl

In this paper we present our investigation of 2D Archimedean lattice photonic crystals with p4g space group symmetry. The structures are made of GaAs both as air holes and dielectric rods in air. In order to analyze the photonic crystal optical properties we performed calculations of the band structures, equi-frequency contours and electromagnetic propagation through the basic structures and waveguides. In addition, we investigated negative refraction and left-handedness in the p4g photonic crystal.


2021 ◽  
pp. 105164
Author(s):  
Qifa Liu ◽  
Jingtong Bin ◽  
Kerui Feng ◽  
Lu Cheng ◽  
Lianjie Zhao ◽  
...  

2021 ◽  
Author(s):  
Shima El-Shemy ◽  
Mostafa Eissa ◽  
Aly Arafa

Abstract It is interesting to note in recent years for a large number of researchers the topic of photonic crystals (PhCs) because of their new and useful properties. In addition, there are many advantages to photonic crystals materials as a high reflectance materials as well as the high transmittance materials based on the target application. The calculations were done for Aluminum oxide and titanium oxide (Al2O3/TiO2) composite photonic crystal in one dimension, which shows a high reflectivity (~ 99 %). The chosen photonic crystal composite can be useful to reflect the Cherenkov light many times which comes out from Cherenkov radiation by using radioisotope 90Sr-90Y. The output intensified light has power 1.45 µwatt and 1.45 nwatt for 90Sr-90Y with the activity 1Ci and 1mCi respectively, that can be used for micro/nano-power source applications.


2006 ◽  
Vol 15 (01) ◽  
pp. 1-8 ◽  
Author(s):  
KAI SONG ◽  
RENAUD VALLEE ◽  
MARK VAN DER AUWERAER ◽  
KOEN CLAYS

The spontaneous emission of fluorophores embedded in a photonic crystal has been studied. By nano-engineering a sandwich-like photonic structure, such that fluorophore-coated photonic atoms constitute a middle layer between the photonic crystals, we have been able to precisely control the location of fluorophores in photonic crystals and exclude the presence of fluorophores at the surface of the crystal. It has been found that the stopband in the transmission spectrum is deeper than the stopband in the emission spectrum. We conjecture that the omnidirectional propagation of the emission from a point source in an incomplete photonic bandgap is the cause of the shallower stopband in emission.


2016 ◽  
Vol 18 (40) ◽  
pp. 27848-27857 ◽  
Author(s):  
Xiaofang Li ◽  
Changqian Wang ◽  
Bo Li ◽  
Yu Shao ◽  
Danzhen Li

Efficient light harvesting was observed over CdS photodeposited on In2O3 photonic crystals during the photocatalytic hydrogenation of 4-nitroaniline to p-phenylenediamine.


Author(s):  
Azka Umar ◽  
Chun Jiang

This paper focuses on manipulating thermal emission and radiation loss of heat energy in a heat waveguide. A One-Dimensional Photonic Crystal is used as a waveguide clad to prohibit the thermal emission from escaping. The model may reduce the radiation loss of heat energy in the waveguide core, and heat energy can be confined to propagate along the waveguide’s longitude axis. The waveguide clad comprises alternative layers of high and low refractive index materials containing sufficient electromagnetic stop bands to trap the thermal emission from escaping out of the waveguide. The numerical simulation of the model shows that the forbidden bandgap of photonic crystal structures with alternative layers of silica and silicon has width enough to make heat energy be confined within the waveguide core so that efficient heat energy transmission can be achieved along the longitude axis of the waveguide.


Sign in / Sign up

Export Citation Format

Share Document